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1 Some preliminaries

1.1 Definition

An American call option with strike price K and expiration T on an underlying S

gives the holder the right to choose a time between 0 and T to buy 1 share of S with

price K.

An American put option with strike price K and expiration T on an underlying

S gives the holder the right to choose a time between 0 and T to sell 1 share of S

with price K.

Remark: The American option allows the possibility of buying and exercising the

option immediately. Therefore, if we let V A
t be the price of an American call option

with strike K and expiration T , then V A
t ≥ (St − K)+ for all t. It is because if

V A
t < (St−K)+ then one can buy the option and exercise immediately for a positive

profit, which is an arbitrage opportunity. Similarly, the price V A
t of an American put

option also satisfies V A
t ≥ (K − St)+ for all t.

1.2 The optimal exercise time

A holder of an American option will judiciously choose a time to exercise the option to

maximize his expected profit. Such a time will be referred to as the optimal exercise

time. Also note that a prioi, the optimal exercise time is a random time. That is

for different realizations of the paths of the underlying S, the holder might choose

different times to exercise the option.
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1.3 Comparison with European option

We have the following easy, but still important observation: Let V A
t be the (no

arbitrage) price of an American call option and V C
t the (no arbitrage) price of the

corresponding European call option purchased at time t = 0 with the same strike

K and expiry T . That is V C
T = (ST −K)+ and the European option holder cannot

exercise the option earlier than T . Then V A
t ≥ V C

t . That is the price of an American

option is always at least as expensive as its European counterpart. Note that this

conclusion is model independent: we do not make any assumption on St.

Reason: Suppose V C
t > V A

t . Then we take a long position (that is we buy 1 share)

on the American option and a short position (that is we sell 1 share) on the European

option. Then we make a risk free positive profit equals V C
t − V A

t . At time T , we

exercise the American option to close out our short position on the European option.

Thus this is an arbitrage opportunity and therefore we must have V C
t ≤ V A

t .

There is another rather surprising result. That is in the case of a call option, the

price of an American option on an asset that does not pay dividend is equal to

the price of a European option for all time: V A
t = V C

t , for all t. Thus the optimal

exercise time of an American call option will always be the expiration time T . This

result also is model independent. We present it in the next section.

1.4 American call option

Let C(t) be the price of a European call with strike K expiring at time T . Let A(t)

be the price of the corresponding American call. No particular model is put on the

price process, except that we assume no dividends are paid on the asset. We will use a

no-arbitrage argument to show that C(t) > (S(t)−K)+ for all t < T , as long as S(T )

can fall to either side of K with positive probability. Use this result to show that

A(t) = C(t) for all t and that early exercise is never optimal. ( It is also helpful to

keep this observation in mind: If A(t) > (St −K)+ then it is not optimal to exercise

the American option at time t since trading the option itself gives higher pay off than

exercising the option).

Ans: As long as P (S(T ) > K) > 0, the price C(t) > 0, because the probability of

a strictly positive payoff is greater than zero.

If 0 < C(t) ≤ (S(t) −K)+ at some t < T , then S(t) > K and S(t) ≥ C(t) + K.

This would create an arbitrage opportunity. Suppose you short one share of the

underlying (that is you borrow S(t) in cash from an agent and pay back one share

2



of S at time T - Another way to think about it is you borrow 1 share of S now and

pay it back at time T ) and buy the European call for C(t), this leaves you with at

least S(t) − C(t) ≥ K to invest at the risk-free rate. Since you owe a share of the

underlying, your return from this position at T is

(S(t)− C(t))er(T−t) + (S(T )−K)+ − S(T ) = (S(t)− C(t))er(T−t) −min{K,S(T )}
≥ Ker(T−t) −min{K,S(T )}

If r > 0, this is always positive, and so it yields an arbitrage. If r = 0, this payoff is

non-negative and strictly positive on the event S(t) < K, which we assume happens

with positive probability, so again we have an arbitrage. It follows that C(t) >

(S(t)−K)+, if t ≤ T , in order that there is no arbitrage.

The price of the, A(t) of the American call is always greater than or equal to C(t).

Thus A(t) ≥ C(t) > (S(t) −K)+ when t < T . Since the value of the American call

is thus always strictly greater than the value of immediate exercise if t < T , it is

optimal to exercise the American call only at T . It follows then that the American

and European call have the same value: A(t) = C(t), for all t ≤ T .

2 Optimal stopping

Suppose you’re the holder of an American option. Your goal is to choose a time to

stop (to exercise the option) judiciously to maximize your return. What properties

does this time have to satisfy? We have the following observations:

1. The exercise time would be random, rather tha deterministic : it is clear that

for different realizations of the asset, you would want to choose different times to

exercise the option.

2. Suppose we are currently at time t. The decision, whether or not, to exercise

at time t would be based on the past performance of the asset, up to time t. For

example, if you hold an American put option, one possible stopping rule is to exercise

when the asset price goes beyond a level L, where L is a constant chosen at time 0.

However, the exercise decision cannot be made based on the future information

after time t. We say the random time is a stopping time with respect to the filtration

generated by the underlying asset S. If we denote τ(ω) to be the exercise time, then

we write τ ∈ FSt .

3. The best (random) stopping strategy you can make can only be chosen among

the stopping time strategies. This is a subtle point to appreciate, as besides stopping
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time decision, one can imagine another type of mixed strategy: if we have 2 strategies

τ1, τ2 then we use τ1 with probability p and τ2 with probability 1−p, and this is done

via an independent coin flip. For example, you can do the following: every day you

flip a coin and exercise the option the first time the coin flip turns H. This will not be

better than making your decision using purely stopping time. The reason is we can

show there is an optimal stopping time τ ∗ that maximizes your return among other

stopping times. Thus if you randomized your decision among stopping times, then

you miss the “best optimal” stopping time sometimes. More conrete example will be

showed below.

4. If we are in a discrete time model, the decision to stop must be made on

discrete time points. In other words, the stopping times we referred to above are

discrete stopping times. We study some preliminary properties of discrete stopping

times in the next section.

3 Discrete stopping time

3.1 Stopping time definition

Definition 3.1. Let τ be a random variable taking values {0, 1, ..., N}. We say τ is

a stopping time with respect to FS(n) if for all n = 0, 1, ..., N

{τ ≤ n} ∈ FS(n)).

Remark 3.2. Note that the notion of a stopping time is tied to a filtration (similar to

the notion of a martingale). It could happen that τ is a stopping time w.r.t a filtration

FS1(n) but not a stopping time w.r.t another filtration FS2(n).

3.2 Some propreties

1. If τ is a F(n) stopping time then {τ < n} = {τ ≤ n− 1} ∈ F(n− 1) ⊆ F(n), we

have

{τ ≥ n} = {τ < n}c ∈ F(n)

Hence

{τ = n} = {τ ≤ n} ∩ {τ ≥ n} ∈ F(n).
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Conversely if {τ = n} ∈ F(n) for all n then {τ ≤ n} = ∪ni=0{τ = i} ∈ F(n), for

all n as well. So we can use either conditions: {τ = n} ∈ F(n) or {τ ≤ n} ∈ F(n) as

definition for stopping time in discrete time.

2. (Important) The event {τ = 0} has probability 0 or 1. The reason is {τ = 0} ∈
FS0 , but FS0 is the information of the asset up to today, which we assume know. Thus

we must know whether or not {τ = 0} with probability 1 (simply put: we must know

whether we exercise the option today or not).

3. Let τ1, τ2 be stopping times w.r.t. FS(n). Then min(τ1, τ2) and max(τ1, τ2) are

stopping times w.r.t FS(n).

4 Pricing an American put option in 1 period model

4.1 Mathematical definition

For any time k, 0 ≤ k ≤ N , let Vk denote the price of an American put option

with strike K and expiration N , provided the option has not been exercised. This is

equivalent to say Vk is the price of an American put option that allows you to choose

an exercise time from k to N . From our discussion above, we conclude

Vk = max
τ : τ stopping time taking values from k to N

EQ
(
e−(τ−k)∆T (K − Sτ )+|FSk

)
.

This will be our mathematical definition of the value of an American option

at time k, if it has not been exercised.

We call the stopping time that achieves the maximum in the above definition the

optimal stopping time for Vk, from here on denoted as τ ∗k . We will show that it exists

and characterize it in the later section.

4.2 Pricing in 1 period

1. We will now investigate how to solve for Vk, k = 0, 1, · · · , N in our discrete binomial

model. First, suppose that N = 0, that is the option exires today, then it is clear

that

V0 = (K − S0)+.

3. Now suppose N = 1. Then V1 = (K − S1)+. What about V0? Note that if a

stopping time τ ∈ Fk, k = 0, 1 then P (τ = 0) = 0 or 1, as well as P (τ = 1) = 0 or 1.
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In other words, at time 0 we have 2 choices: exercise the option right away or

exercise the option tomorrow. (Any strategy that says with 40% we exercise today

and 50% we exercise tomorrow etc. will not be optimal, as we will show).

Let’s denote V 1
0 = EQ(e−r∆T (K−S1)+) to be the expected return of the option if

we go with the strategy exercising tomorrow. Also V 0
0 = (K − S0)+ is the return we

get if we go with the strategy exercising today. Then our decision is clear: exercise

today if V 0
0 ≥ V 1

0 and exercise tomorrow if V 1
0 > V 0

0 . And the value (the price) of the

American option today is

V0 = max(V 1
0 , V

0
0 ).

4. Mathematically we can express the above as followed: define τ ∗ as

τ ∗ := 1{V 1
0 >V

0
0 }.

Then (you can check) τ ∗ is a stopping time (actually it is deterministic) and

V0 = EQ(e−r(∆T )τ∗(K − Sτ∗)+).

5. Why is the mixed strategy (40% today, 60% tomorrow) not optimal? Let τ be

a random variable such that P (τ = 0) = .4, P (τ = 1) = .6 and τ is independent of S.

Then the return of this strategy is

V τ
0 = EQ(e−r(∆T )τ (K − Sτ )+)

= EQ
[
EQ(e−r(∆T )τ (K − Sτ )+|τ)

]
Since τ is independent of S,

EQ(e−r(∆T )τ (K − Sτ )+|τ) = EQ(e−r(∆T )(K − S1)+)1τ=1 + (K − S+
0 )1τ=0

= V 1
0 1τ=1 + V 0

0 1τ=0.

Thus

V τ
0 = V 1

0 P (τ = 1) + V 0
0 P (τ = 0) ≤ max(V 1

0 , V
0

0 )

and hence τ is not an optimal strategy.

6



5 Pricing an American put option in multi-period

model

5.1 An intuitive approach

We want to find a formula for Vk, 0 ≤ k ≤ N . When k = N, the answer is easy:

VN = (K − SN)+. This is because at the expiration, exercising the option is always

no worse than letting it expires worthless.

At k = N − 1, the option holder has 2 choices: either exercise immediately, or

wait to exercise at time N . Which way is better? If she exercises immediately, she’ll

get a pay off of (K − SN−1)+. If she waits until time N to exercise, the risk neutral

expected payoff of this choice at time N − 1 to her is

EQ(e−r∆T (K − SN)+|FSN−1).

She can compare between these two values and decide her strategy depending on

which one yields a better payoff. It also follows that at time N − 1 the American

option is worth

VN−1 = max
{

(K − SN−1)+, EQ(e−r∆T (K − SN)+|FSN−1)
}
.

Generally, at a time k, she has 2 choices: exercise immediately and receive (K −
Sk)

+, or wait until time k + 1 and get the pay off Vk+1. How? By following the

optimal stopping strategy starting at time k + 1 once she is at time k + 1. Thus, at

time k the American option is worth

Vk = max
{

(K − Sk)+, EQ(e−r∆TVk+1|FSk )
}
.

This approach is intuitive, but needs justification on why it is correct. The reason

is by definition, Vk is the best risk neutral expected payoff among all stopping time

strategies starting at time k. To reach this value, one may imagine the option holder

searching among all strategies available to her at time k and choose the optimal one

among those. The assertion that

Vk = max
{

(K − Sk)+, EQ(e−r∆TVk+1|FSk )
}

is equivalent to saying searching optimally from time k to N gives the same

payoff as searching optimally from time k to k+1, and then search optimally

from time k + 1 to N .
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By searching optimally from k to k + 1, and then search optimally from k + 1 to

N we mean choose a strategy that realizes the best payoff comparing if one stops at

k or stops at k+ 1, with the payoff at k+ 1 equals to the optimal payoff starting from

k + 1 to N .

But this assertion is not obvious. Stating that it is true amounts to proving the

dynamic programming principle for Vk.

5.2 The dynamic programming principle

We now develop a formula for Vk. The claim is that

Vk = max
{

(K − Sk)+, EQ(e−r∆TVk+1|FSk )
}
. (1)

For the binomial model, this translates to

Vk(ω) = max
{

(K − Sk)+, e−rT [qVk(ωu) + (1− q)Vk(ωd)]
}
. (2)

Formula (1) is the basis for the intuitive approach, or the tree pricing

method we described above. Now we prove it.

5.3 Proof of (1)

5.3.1 At k = N − 1

Observe that, if τ stopping time taking values from N − 1 to N , then by a similar

argument from the previous section either P (τ = N − 1|FSN−1) = 1 or P (τ = N −
1|FSN−1) = 1.

Denote

V N
N−1 = EQ(e−r∆T (K − SN)+|FSN−1).

Then by definition, we have

VN−1 = max
{

(K − SN−1)+, V N
N−1

}
,

which is (1).

Define

τ ∗N−1 := N1{V N
N−1>(K−SN−1)+} + (N − 1)1{V N

N−1≤(K−SN−1)+},
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then we can check that τ ∗N−1 is a stopping time and

VN−1 = EQ(e−r(∆T )τ∗N−1(K − Sτ∗N−1
)+)|FSN−1),

as in the 1 period model. More importantly,

Vτ∗N−1
= VN1{V N

N−1>(K−SN−1)+} + VN−11{V N
N−1≤(K−SN−1)+}

= (K − SN)+1{τ∗N−1=N} + (K − SN−1)+1{τ∗N−1=N−1} = (Sτ∗N−1
−K)+.

This is very important: at the optimal exercise time, the value of the option

is equal to the excercise value. We will show this is true for general k.

5.3.2 At a general k ≤ N − 1

We proceed by induction. Suppose (1) is true at step k+ 1 and the optimal stopping

time τ ∗k+1 exists and the following relation holds:

Vτ∗k+1
= (Sτ∗k+1

−K)+.

Recall that by definition

Vk = max
τ : τ stopping time taking values from k to N

EQ
(
e−r(τ−k)∆T (K − Sτ )+|FSk

)
.

Again observe that, if τ is a stopping time taking values from k to N , then either

P (τ = k|FSk ) = 1 or P (τ > k|FSk ) = 1. The set of these two types of stoping times

are mutually exclusive. Therefore, if X is a function of τ

max
τ : τ values from k to N

E(X(τ)|FSk ) = max
{
Xk, max

τ : τ values from k + 1 to N
E(X(τ)|FSk )

}
.

Replacing X(τ) with e−(τ−k)∆T (K − Sτ )+ we have

E(
(
e−(τ−k)∆T (K − Sτ )+|FSk ) = E

(
e−r∆TE(

(
e−r(τ−(k+1))∆T (K − Sτ )+|FSk )

)
and for any τ taking values from k + 1 to N

E
(
e−r∆TE(

(
e−r(τ−(k+1))∆T (K − Sτ )+|FSk )

)
≤

E
(
e−r∆T max

τ : τ values from k + 1 to N
E(
(
e−r(τ−(k+1))∆T (K − Sτ )+|FSk )

)
= E

(
e−r∆TVk+1

)
.

It follows that

Vk ≤ max
{

(K − Sk)+, EQ(e−r∆TVk+1|FSk )
}
.
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On the other hand, it is clear that

Vk ≥ (K − Sk)+.

Moreover,

EQ(e−r∆TVk+1|FSk ) = EQ
(
e−r∆TEQ[e−r∆(τ∗k+1−(k+1))(K − Sτ∗k+1

)+|FSk+1]|FSk
)

= EQ
(
e−r∆T (τ∗k+1−k)(K − Sτ∗k+1

)+|FSk
)
≤ Vk.

Thus

Vk ≥ max
{

(K − Sk)+, EQ(e−r∆TVk+1|FSk )
}
.

Finally denoting V k+1
k = EQ(e−r∆TVk+1|FSk ) and define

τ ∗k := τ ∗k+11{V k+1
k >(K−Sk)+} + k1{V k+1

k ≤(K−Sk)+},

we see that

Vτ∗k = Vτ∗k+11{V k+1
k >(K−Sk)+} + Vk1{V k+1

k ≤(K−Sk)+}

= (K − Sτ∗k+1
)+1{τ∗k=τ∗k+1} + (K − Sk)+1{τ∗k=k} = (Sτ∗k −K)+,

completing the induction step.
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