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1 Conditional expectation in the multi-period model

1.1 The value of a forward contract in the future

Suppose we’re in the multi-period model with the present being k = 0. Consider the

forward contract, which allows the holder to pay K dollars for 1 share of the asset S

at time N . We’ve already discussed that its price V0 should be S0 −Ke−rN∆T .

Now suppose at a time n : 0 < n < N we want to sell this contract. How much

should we charge it by? You should easily see that its price at time n would be

Vn = Sn −Ke−r(N−n)∆T , by a replicating portfolio argument. But suppose we would

like to apply the probabilistic approach in this case, how can we do it? Up to now,

we used expectation under the risk neutral measure as a method for obtaining the

no arbitrage price. But it’s clear that taking expectation will not yield Vn of the

above forward contract; because taking expectation gives a constant value, while Vn

is clearly a random variable.

Of course the probabilistic approach can still be used, but instead of taking expec-

tation we need to take conditional expectation. The intuition is that we are discussing

a situation in the future, where conditioning on the price of Sn, we can decide the

value of Vn. Indeed conditional expectation is fundamental in studying the multi-

period model, as well as the continuous model later on. It is useful, for example,

when we want to talk about not only the current price of a financial product, but its

price evolution from time 0 to the expiration time N . We’ll give a few examples for

the multi-period model in the next section.
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1.2 The flow of information

We mentioned that at time n, the value of Sn is known to us. This is correct. But to be

more precise, at time n, all values S0, S1, · · · , Sn are known to us. Thus in deciding

the price of a financial product at time n, we need to condition on information of

S0, S1, · · · , Sn instead of just Sn. This would be clear, for example, when we deal

with path-dependent or exotic option.

We will then look at expressions of the form

E(f(Sn+k)|S0, S1, · · · , Sn), k ≥ 0.

We introduce a notation that represents the amount of information regarding

Sk, k = 1, 2, · · · , n available at time n :FS
n . When the asset in mind is clear (i.e.

we’re only discussing 1 asset S), we’ll drop the super-script S and just write Fn.

Thus

E(f(Sn+k)|S0, S1, · · · , Sn) = E(f(Sn+k)|FS
n ) = E(f(Sn+k)|Fn).

Now because the process Sk is Markov, we have

E(f(Sn+k)|Fn) = E(f(Sn+k)|Sn).

Thus most of the time, conditioning on Sn is sufficient. There are exceptions, for

example, when we deal with path-dependent option. It is clear that

E(S1S2|FS
2 ) = S1S2 6= E(S1S2|S2),

because

E(S1S2|S2) = S2E(S1|S2),

and generally E(S1|S2) 6= S1.

1.3 Examples

When taking conditional expectation in the multi-period model, you should try to

take advantage of the following:

1. The form of Sn : Sn = S0X1X2 · · ·Xn. 2. The i.i.d property of Xi, i =

1, · · ·n. 3. The elementary properties of conditional expectation. 4. The form of f

in E(fSn+k
|Sk).

Example 1.1.

E(S4|S2) = E(S2X3X4|S2) = S2E(X3X4|S2) = S2E(X3)E(X4) = S2(pu+ (1− p)d)2.

2



Example 1.2.

E(S2
3 |S2) = E((S2X3)2|S2) = SE

2 (X2
3 ) = S2(pu2 + (1− p)d2).

1.4 Conditional expectation revisited

When dealing with path-dependent options, we cannot rely on the Markovian prop-

erty of S as remarked above. So the following rule (the so-called tower property of

conditional expectation) is important:

If m ≤ n then for any random variable ξ:

E(E(ξ|FS
n )|FS

m) = E(E(ξ|FS
m)|FS

n ) = E(ξ|FS
m).

In other words, when you condition on more information, and then condition on

less information, (or the other way) the result is always the same as conditioning on

less information.

Proof. We prove

E(E(ξ|FS
n )|FS

m) = E(ξ|FS
m)

and leave the other equality as exercise. First note that E(E(ξ|FS
n )|FS

m) is a function

of S0, S1, · · · , Sm by definition. Let’s call it g(S0, S1, · · · , Sm). We need to check for

any function f(S0, S1, · · · , Sm)

E
[
g(S0, S1, · · · , Sm)f(S0, S1, · · · , Sm)

]
= E

[
ξf(S0, S1, · · · , Sm)

]
.

But by definition,

E
[
g(S0, S1, · · · , Sm)f(S0, S1, · · · , Sm)

]
= E

[
E(ξ|FS

n )f(S0, S1, · · · , Sm)
]
.

Observe that f(S0, S1, · · · , Sm) is also a function of S0, S1, · · · , Sn since m ≤ n.

Therefore,

E
[
E(ξ|FS

n )f(S0, S1, · · · , Sm)
]

= E
[
ξf(S0, S1, · · · , Sm)

]
.

2 The risk neutral measure

2.1 Motivation

In the multi-period model, we do not have to limit ourselves to only consider expira-

tion time n = N . Consider a forward contract on the asset S with 0 strike price that
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has expiration time n ≤ N . What is the price for this contract at time k? Again,

using the replicating portfolio apprach, you’ll see that the price is Sk.

Recall how we define the risk neutral measure in the 1 period model as the measure

Q such that

EQ(e−rTST ) = S0.

The motivation for us there is exactly because the forward contract with 0 strike price

expiration T must be worth S0 at time 0. Thus together with the above analysis,

you can see that the the risk neutral measure Q in the multi-period binomial model

is such that for any k ≤ n

EQ(e−(n−k)∆TSn|Sk) = Sk. (1)

2.2 The formula for the risk neutral measure

The equation (1) defines the risk neutral measure. But we want to find out concretely

how to implement the risk neutral measure on the multi-period model, just as we did

in the 1-period model. One important observation will help us here, that is when limit

to a 1 step period, such as from n− 1 to n, the multi-period model looks exactly as a

1 period model. And the entire multi-period model can be re-produced by repeating so

many such 1 step period movements.

In terms of mathematics, what we’re utilizing is the identical property of Xi. That

is if we find out the distribution of X1 under the risk neutral measure Q, then we’ve

found out the distribution of all the Xi’s under Q as well. And that completes the

decription of risk neutral measure]

Concretely, the equation (1) for n = 1 and k = 0 reads

EQ(e−∆TS1) = S0.

But we have solved this equation before, of course. We conclude that Q(X1 =

u) = q and Q(X1 = d) = 1− q where

q =
er∆T − d
u− d

. (2)

And thus under Q, P (Xi = u) = q and P (Xi = d) = 1− q for all i = 1, 2, · · · , N .

You may be suspicious. We derived this distribution from a 1 period analysis.

Are we sure that the equation (1) holds for general n and k?
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To check, note this simple but also important observation:

EQ(X1) =
er∆T − d
u− d

u+
u− er∆T

u− d
d = er∆T .

Thus

EQ(e−(n−k)∆TSn|Sk) = EQ(e−(n−k)∆TSkXk+1Xk+2 · · ·Xn|Sk)

= e−(n−k)∆TSk[E(X1)]n−k = Sk,

and equation (1) has been checked.

2.3 Pricing by risk neutral measure

Theorem 2.1. Suppose the asset Sn follows the multi-period binomial model, where

the probability Sn goes up is given by equation (2). Then the no arbitrage price at

time k for any financial derivative with exercise time N is

Vk = EQ(e−(N−k)∆TVN |FS
k ). (3)

In particular, its value at 0 is

V0 = EQ(e−N∆TVN).

Remark:

1. We will refer to equation (3) as the pricing formula (under risk neutral measure).

2. Note that in the pricing formula, the conditioning is on the history of S, up to

time k. This formula becomes

Vk = EQ(e−(N−k)∆TVN |Sk)

when we deal with Euro-style derivative for example. But in general, say, when

dealing with exotic options, one cannot reduce conditioning on FS
k down to Sk. Thus

the pricing formula is a great theoeretical result for discussing the evolution of the

derivative’s price. Computing explicitly Vk might take additional work.

3. The pricing formula also only works for financial product with exercise time N .

In other words, it applies to Euro style and exotic derivatives, but NOT American

option. We’ll discuss why when we discusses the pricing of American options.
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2.4 The fundamental theorems of asset pricing in multi-period

model

You may also question the connection between the risk neutral measure, the existence

of the replicating portfolio and the non-existence of arbitrage opportunity. Similar

to the one period model, we also have two fundamental theorems that establish their

connection here:

Theorem 2.2. In the multi-period binomial model, the risk neutral measure exists if

and only if there is no arbitrage opportunity.

Theorem 2.3. In the multi-period model, the risk neutral measure exists, and is

unique, if and only if there is a replicating portfolio.

Intuitively, these theorems are true because when we limit to any one step period,

the multi-period model “looks like” the 1 period model. We have checked that for

the one-period model, these theorems are true.

3 Remarks on using the binomial tree for pricing

It is common to use the “backward stepping” method to price a financial asset in the

multi-period binomial model. This again makes use of the formula (3), where now we

replace N by k + 1, by the property of conditional expectation:

Vk = EQ(e−∆TVk+1|FS
k ).

Even more explicitly, if we denote ω to be a vector of length k consisting of u and

d (so that ω denotes an outcome at time k) then the above formula becomes

Vk(ω) = e−∆T [qVk+1(ωu) + (1− q)Vk+1(ωd)]. (4)
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This equation can be reduced further, in the case of Euro-style options, to finding

the value of Vk at “a certain node” on the binomial tree by the Markov property of

S. Consider a time k, 0 ≤ k ≤ N with the corresponding k + 1 nodes. The price Vk

at a particular node i, i = 1, · · · , k + 1 can be computed as

Vk(i) = e−∆T [qVk+1(iu) + (1− q)Vk+1(id)].

For example, consider the following example on pricing a put option on a stock

with the strike K = 1.56 and the expiration N = 3. The put price at each node is

given in parentheses below the stock price. The risk neutral probability is q = 0.4626.

Figure 1: Binomial pricing of a put option

At the time k = 2 there are k + 1 = 3 nodes. At the bottom node i = 3, we have

V2(3u) = (1.56− 1.2216)+ = 0.3384

V2(3d) = (1.56− 0.9050)+ = 0.6550

V2(3) = 0.4626× 0.3384 + (1− 0.4626)× 0.6550 = 0.5059.

Formula(4) implies that for any outcomes ω1, ω2 of length k that consists of the

same portion of u and d (for example k = 3 and ω1 = ddu and ω2 = dud), we have

Vk(ω1) = Vk(ω2).
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This is valid because the price of the financial derivative (in this case the European

option) is Markovian. That is Vk only depends on Sk (and not Sk−1, Sk−2, · · · ), and

Sk(ω1) = Sk(ω2).

Indeed in the figure (1), we see that for the two outcomes ω1 = ud, ω2 = du, V2(ω1) =

V2(ω2) = 0.1371. This is because V2 only depends on the value of S2. And in this

example S2(du) = S2(ud) = 1.4229.

However, this finding value at a “certain node” will no longer be valid in a path

dependent option, for example a down and out option. It is because now Vk depends

not only on Sk, but also on Sk−1, Sk−2, · · · . It could happen that Sk(ω1) = Sk(ω2)

but Sk−1(ω1) 6= Sk−1(ω2). For example in figure (1),

S3(uud) = S3(duu) = 1.6490

but

S2(uud) = 1.9207 6= S2(duu) = 1.4229.

So one cannot conclude that Vk(ω1) = Vk(ω2). For example, if we consider an look

back option on the same stock as given in figure (1) then you can see that

V3(uud) = max(1.43, 1.6573, 1.9207, 1.6490) = 1.9207

while

V3(duu) = max(1.43, 1.2277, 1.4229, 1.6490) = 1.6490.

However we emphasize that the formula (4) is still valid. We just have to price

the option via a “path by path” method.
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