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1 Description of the multi-period binomial model

To make our model richer, we’ll transition from the 1-period model to the multi-period

binomial model. Specifically we’ll have:

1.1 Notations

The present time, denoted at n = 0 and the expiration time, denoted at n = N . The

lower case letter n, k (and occasionally i, j,m) will be used to denote the time variable.

The notation Sk (or Sn, Si, Sj · · · ) denotes the value of the stock (the underlying) at

time k (or time n, i, j · · · ). An important convention we’ll use is that S0 will always

be a constant, that is the present value of the stock is always known. For any k ≥ 1,

Sk is a random variable. The specific distribution of Sk will be discussed below.

Similarly, we’ll denote Vk to be the value of a specific financial product at time k.

In particular, if V is the European call option with strike K and expiration N , then

VN = (SN −K)+. We’ll also denote πk to be the value of a specific portfolio at time

k. In particular, if the portfolio is replicating then VN = πN . Also note that V0, π0

are also constants, and for k ≥ 1, Vk, πk are random variables.

We will suppose that the time intervals between any two discrete moments k, k+1

are the same, denoted as ∆T . Thus the expiration time can also be written as

T = N∆T .

For a replicating portfolio, we will denote the number of shares of S we hold at a

particular time as ∆k (do not confuse this with the interval length ∆T . In general,

∆k will also be a random variable (which is easy to understand, as the number of

shares we hold at time k will depend on the actual value of Sk at that time).

The interest rate will be denoted as r.
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1.2 The evolution of the stock

At any time k, there are two possibilities for the stock to evolve: either jump up

to Sk+1 = uSk or jump down to Sk+1 = dSk for some d < er∆T < u. Moreover,

the distribution of Sk+1 only depends on Sk and not any further history of S. In

mathematical notation we write:

P (Sk+1 = x|S0, S1, · · · , Sk) = P (Sk+1 = x|Sk),

for any real value x. That is, as far as deciding the behavior of Sk+1, the only

information we need is the behavior of Sk. Any further information about its past

history is irrelevant. We call this property of a random process (which Sk, k = 1, · · ·N
is) the Markov property. The theory of Markov chain is discussed in more details in

the second semester of probability theory class 478.

Figure 1: Multi-period binomial model

An example of something that is not a Markov chain is any process whose evolution

depends on more than its immediate history. For example, you may argue that the

distribution of tomorrow’s weather (whether it’s gonna rain, shine, snow, be windy

etc.) does not just depend on today’s weather but also on the last couple of days.

I.e. if it has been raining for the last 2 days then the chance of its continuing raining

is higher than if it’s only been raining today. In this sense, the day by day weather

is not a Markov process. But one can consider the weather of a two or three days in
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a row, and then it may be a Markov process. This is a technique called changing the

state space of a process. This particular discussion is only for your information. In

this class we’ll only be dealing with process that is already Markov to start with.

1.3 The probability space and the state space

You can easily see that for a given k, there are only k+ 1 values Sk can take. Namely

Sk = S0u
idk−i, i = 0, 1, · · · , k.

It is convenient to have notations to refer to this event. We’ll give an example when

N = 3.

It is clear that when N = 3, there are only 8 possible outcomes, namely

Ω =
{
uuu, uud, udu, duu, ddu, dud, udd, ddd

}
,

which corresponds to, for example

S3(uuu) = S0u
3, S3(dud) = S0d

2u, S2(uud) = S0u
2, S0(udu) = S0ud · · ·

From this list we can create other events, such as

{uu} = {uuu} ∪ {uud}, {ud} = {udu} ∪ {udd} · · ·

(and events at the time k = 1 level etc)

Note that these events are outcomes for S2 but not outcome for S3. Thus it makes

sense to say S2(ud) = S0ud but not S3(ud)(=?).

We’ll refer to Ω as our probability space and the values Sk can take as our state

space for Sk. Note that for a particular N , there are 2N outcomes in Ω, and there are

k + 1 members in the state space of Sk.

1.4 A mathematical construct of Sk

We will construct our multi-period model for Sk out of independent, identically dis-

tributed random variables that represent jump size. This will be a very important

idea, that you may see again in the construction of general Markov processes, or in

Brownian motion, an important ingredient in our continous model later on.

More specifically, let X1, X2, · · · , XN be i.i.d random variables with distribution

P (X1 = u) = p;P (X1 = d) = 1− p,
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for some 0 < p < 1. (Note: since these random variables are identical, we only need

to prescribe the distribution of X1 and the rest would have the same distribution).

Then we simply define

Sk := S0X1X2 · · · Xk = S0

k∏
i=1

Xi.

Note that in this way we have a recursion relationship between Si and Sj, i < j

which comes in handy when we compute conditional expectation (discussed later on

in this lecture)

Sj = SiXi+1Xi+2 · · ·Xj = Si

j∏
k=i+1

Xk.

We claim that this way we recover the description of the evolution of Sk given above.

Indeed, it is easy to see the probability space and state space are the same. The only

thing to check is the Markovian property of Sk. We will give a rigorous justification

when when we discuss conditional expectation in the multi-period model. For now,

let’s just give some intuition why it is true. We have

P (Sk+1 = x|S1, S2, · · · , Sk) = P (SkXk+1 = x|S1, S2, · · · , Sk)

And you see that Xk+1 is independent of S1, S2, · · · , Sk by construction. Thus

conditioning on S1, S2, · · ·Sk is the same as not conditioning as far as Xk+1 is con-

cerned (recall that if X is independent of Y then E(X|Y ) = E(X)). On the other

hand, the only information we need to determine Sk is Sk itself, and we don’t need

S1, S2, · · · , Sk−1. Putting these two facts together, you can believe that

P (SkXk+1 = x|S1, S2, · · · , Sk) = P (SkXk+1|Sk),

which is the Markov property.

This description will be important when we use the probabilistic approach (or

expectation approach) to pricing a financial product. One important remark here

is that the replicating portfolio approach still works in multi-period model. The only

drawback is it is computationally intensive (you’ll see why). Thus if all we are inter-

ested in is pricing, then the expectation approach is more efficient. We’ll treat the

replicating portfolio approach in the in the final section of this note.
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2 The distribution of Sk

We have the following result:

Lemma 2.1. In the above construction, Sk has a binomial distribution. Namely

P (Sk = S0u
idk−i) =

(
k

i

)
pi(1− p)k−i.

Remark: This is not the typical Bin(k, p) distribution that you’re used to, as far

as the values Sk takes is concerned. But if you consider any time S goes up as a

success, and count how many times it goes up until time k, then indeed we get a

Binomial distribution in the traditional sense.

Proof. Recall that Sk = S0X1X2 · · ·Xk. Clearly Sk = S0u
idk−i if and only if i of

X ′s take value u and k − i of them take value d. Because they are independent, the

probability for a particular arrangement to happen is pi(1−p)k−i. There are
(
k
i

)
such

arrangements, since we just choose i of them among k total to take value u.

3 Financial products in multi-period model

The multiperiod model allows for a richer variety of financial products, namely the

products that can depend on the past history of the stock. We’ll describe the financial

products we’ll encounter in this course for the multi-period model below.

3.1 The Euro-style options

A financial product that makes a payment f(SN) for some deterministic function f

at time N is referred to as a Euro-style option. For example, if f(x) = (x − K)+

then we have the Euro-call and f(x) = (K − x)+ then we have the Euro-put option.

But we can also choose f(x) = x2, f(x) = sin(x) or f(x) = (x2 −K)+. Of course the

question about the financial interpretation of these products can be raised (what kind

of advantage to the buyers do they offer?). But mathematically, we can treat all of

these the same ways as we treat the Euro-put and Euro-call options. Moreover, these

additional examples allow for more tractable mathemtical problems to be worked on.

To recap, the distinguishing features of a Euro-style option is that the exercise time

is only at the expiration time N and the dependence of the payoff is only on the value

of the stock at the expiration time SN .
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3.2 Exotic options

Now that we’re in multi-period model, it makes sense to talk about a history of S on

the time interval 0, 1, · · · , N . A financial product that makes payment f(S0, S1, · · · , SN)

for some deterministic function f at time N is referred to as an exotic-option. Thus

like a Euro-style option, the exercise time of an exotic option is still the expiration

time N , but the pay off can be dependent on the past history of S.

Remark: You may argue whether the word option has any meaning in these

contexts, since we do not have the interpretation of a choice here. This is correct, but

simply the word option here can be understood as a financial product. It is also the

terminology employed in the finanical literature, so we’ll follow the convention here.

Some examples of exotic options: The look back option:

f(x1, x2, · · · , xN) = max
i=1,··· ,N

xi.

We call it a look back option since you get the best value of the stock in its past

history as the payment.

On the other hand, if the payment is the average of the stock value in its history,

then we get the Asian option:

f(x1, x2, · · · , xN) =
1

N

N∑
i=1

xi.

We also have the barrier options: if the stock ever get below or above some

threshold, then the option is activated or the option becomes worthless. The first

scenario is referred to as down (or up) and in options. The second is referred

to as down (or up) and out options. The barrier options can in turn be call or

put option. It means if the option ever gets activated (or never knocked out) then

its payment at the expiration time will be the same as a Euro call or put option.

In particular, let’s consider a barrier call option with strike K and barrier L (L is a

constant). The function f(x1, x2, · · · , xN) in this case takes the following form:

Up and in:

f(x1, x2, · · · , xN) = 1{maxi=1,··· ,N xi≥L}(xN −K)+.

Up and out:

f(x1, x2, · · · , xN) = 1max{i=1,··· ,N xi≤L}(xN −K)+.
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Down and in:

f(x1, x2, · · · , xN) = 1min{i=1,··· ,N xi≤L}(xN −K)+.

Down and out:

f(x1, x2, · · · , xN) = 1{maxi=1,··· ,N xi≥L}(xN −K)+.

Where, for a real number x, we have

1{x≥L} = 1 if x ≥ L

= 0 if x < L.

3.3 American options

The last product we’ll encounter is the American option, which is similar to a Euro-

pean option, with the additional feature that it gives the holder the right to choose

the time to exercise the option with a fixed strike price K. More specifically, for

an American call option, the option holder can choose a time between 0 and N to

exercise and pay K dollars for a share of S. For an American call option, the option

holder can choose a time between 0 and N to exercise and sell a share of S for K

dollars.

4 Pricing by the replicating portfolio approach

4.1 Self-financing portfolio

The idea of pricing using the replicating portfolio approach is the same: we would

like to construct a portfolio, initially with ∆0 shares of stock and y dollars in the

money market such that at the expiration time

∆NSN + yN = VN , (1)

where VN is the value of the financial product and yN is the amount of cash in the

portfolio at time N . Notice that here we use ∆N and yN versus the construction

in the 1 period model, where the number of shares of stocks remains the same and

the money market account only becomes yerT . The reason is in the multi-period

model, we can’t expect to select our portfolio at time 0 and leave it unattended,
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hoping that equation (1) will hold at time N . Such approach is called the buy and

hold approach for a portfolio; and obviously we can’t generally use such approach

for pricing in multi-period model. (One reason is you can visualize, with the buy and

hold approach, you’re treating the multi-period model as one big one-period model.

However, now at the terminal time T , SN can take N + 1 values, in stead of just 2

values as before. Thus one cannot solve for ∆0 and y in a over-determined system,

as discussed in the previous lecture).

Thus we need to re-balance our portfolio at each time period 1, 2, · · · , N. How

we select the portfolio will be addressed next; but first we need to note there is one

obvious constraint, if the portfolio is replicating. That is the portfolio has to be

self-financing, i.e. one cannot put additional funding into the portfolio, nor can one

withdraw the cash from it. Letting yk be the amount of cash in the portfolio at time

k, the self-financing condition can be expressed as:

πk+1 = ∆k+1Sk+1 + yk+1 = ∆kSk+1 + yke
r∆T . (2)

The interpretation is this: we hold ∆k shares of stock and yk dollars at time k. At

time k + 1, the stock price changes to Sk+1 and the money market grows to yke
r∆T .

This is our portfolio value at time k+ 1, πk+1. Now we can rebalance our portfolio, if

we want to. But all we at our disposal is πk+1 dollars. Thus if we want to buy ∆k+1

shares of stock at price Sk+1, then the amount of cash we have in the bank, yk+1 has

to be such that

πk+1 = ∆k+1Sk+1 + yk+1.

Note that throughout this discussion, yk can be negative, with the interpretation

that we borrow money from the bank, in stead of putting it in a saving account. Note

that since

πk = ∆kSk + yk,

it follows from (2) that

πk+1 = ∆kSk+1 + er∆T (πk −∆kSk). (3)

This equation can be looked as as a recurrence relation between πk+1 and πk. It

has the advantage that the cash holding yk and yk+1 do not show up in the equation,

thus reducing the number of unknowns we have to deal with (only ∆k needs to be

found). Observe that both (2) and (3) are equivalent, thus we’ll refer to either one as

the self-financing condition (or equivalently, the self-financing equations). More often
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equation (3) will be used. However, you should still use your judgement to decide

which equation is best for which situation.

The self-financing equation (3) will be the key to solve for the replicating portfolio.

The pricing by the replicating portfolio approach in the 1-period model is simply an

application of the self-financing condition, as we’ll show in the next section.

4.2 Self-financing equation in 1 period model

In the 1 period model, N = 1 thus the equation (3) reduces to

π1 = ∆0S1 + er∆T (π0 −∆0S0).

How to use this equation? The portfolio is replicating, thus pi1 = V1. Keeping in

mind that this equation has to hold for all outcomes, we have

Vu = V1(u) = ∆0S1(u) + er∆T (π0 −∆0S0) = ∆0uS0 + er∆T (π0 −∆0S0)

Vd = V1(d) = ∆0S1(d) + er∆T (π0 −∆0S0) = ∆0dS0 + er∆T (π0 −∆0S0).

Thus we have ∆0 = Vu−Vd

S0(u−d)
, exactly as we had before.

4.3 The steps of solving the self-financing equation

4.4 Non-path dependent option

A recursive approach is used to find the replicating portfolio using the self-financing

equation. We start at time k = N − 1 where equation (3) reads as

πN = ∆N−1SN + er∆T (πN−1 −∆N−1SN−1).

What are we solving for? We are solving for ∆N−1 and πN−1. Once we

know these then it is clear that we known how to construct a hedging portfolio at

time N − 1. However, observe that the above equation is an equation of random

variables, so clearly we are NOT solving for explicit (numerical) value of ∆N−1 and

πN−1. Instead, we should ask we are solving for ∆N−1 and πN−1 in terms of what

variable? The answer is we are solving for ∆N−1 and πN−1 in terms of SN−1.

A crucial observation here is that since we are at time k = N−1, SN−1 is a known

value. This has a real-life interpretation that once we arrive at time N − 1, then

by observing the stock market, we know what SN−1 is. Since ∆N−1 and πN−1 are

expressed in terms of SN−1, we can balance our portfolio accordingly.
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What about πN , how do we know its value? This is where the replication property

is used. Since the portfolio is replicating, πN = VN and if we are dealing with say a

Euro-style derivative, then we can replace VN with g(SN) for some function g.

What about SN? This is where the binomial model is used. Namely, for a given

value of SN−1 (recall we assumed it’s known, since we’re at time N − 1), the only

values SN can take are uSN−1 or dSN−1, thus essentially reducing us to the 1-period

model’s case. More details will be given in the example in class.

Now assume that we have solved this equation at time N−1. Proceed backwardly,

the next equation at time N − 2 is

πN−1 = ∆N−2SN−1 + er∆T (πN−2 −∆N−2SN−2).

But now we’re back to the same procedure above, with πN−1 being function of

SN−1, SN−2 is known, and we’re solving for ∆N−2 and πN−2 in terms of SN−2.

Thus you see that provided, at each step k we can solve for ∆k and πk then keep

on going we will arrive at step k = 0, at which point we have completely obtained

our replicating portfolio set up, as well as the price of the financial product V0, given

by π0.

It is not hard to be convinced that we can solve for ∆k and πk at each step k.

An abstract proof can be given, but it can be messy. We’ll demonstrate this by an

example with N = 3 in class and you’ll see how one can generally prove this fact.

4.5 Path dependent option

If the derivative is path-dependent, then the above system of equations needs to be

replaced with

g(SN , SN−1, · · · , S0) = ∆N−1SN + er∆T (πN−1 −∆N−1SN−1).

So now, we are solving for πN−1 as a function of SN−1, SN−2, · · · , S0 instead of

just SN−1. This has to hold true for all N + 1 outcomes of SN . The question is, of

course, is the above system solvable? The answer is yes.

The key again is for any outcomes of s0,1 , · · · , sN−1, SN can only take 2 values

usN−1, dsN−1. Thus the above equation reads, for a particular outcome

g(usn−1, sN−1, · · · , s0) = ∆N−1(s0, s1, · · · , sN−1)usN−1

+er∆T (πN−1(s0, s1, · · · , sN−1)−∆N−1sN−1)

g(dsn−1, sN−1, · · · , s0) = ∆N−1(s0, s1, · · · , sN−1)dsN−1

+er∆T (πN−1(s0, s1, · · · , sN−1)−∆N−1sN−1)
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This is a system of 2 equations with 2 unknowns, and you can verify that it is

solvable.
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