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1 Discrete bond model

Consider the binomial multi-period model 0, 1, · · · , N . At each time k there are k+1

possible outcomes. Consider a bond with maturity N and face value F . That is at

time N the bond holder will receive F dollars (fixed at time 0). We want to model

interest rate rk and the bond price Bk at time k. The length of each period will be

denoted as ∆T .

However, what we learned from the previous binomial model cannot be directly

used. First we cannot model the bond price following the stock’s approach: given B0,

define

Bk+1 = uBk with probability p

= dBk with probability 1− p.

The reason is that the bond is financial product that we want to price, so we cannot

model it directly. A zero-coupon bond with maturity N is a financial contract that

pays the holder 1 dollar at time N . Observe that if we follow the stock’s binominal

modelling approach then there is no way we can get BN = 1. We need to work

backward from BN = 1 to figure out Bk, k = 0, · · · , n− 1.

The bond is not a financial derivative (it does not derive its value from other

underlying). However, the bond price is influenced by interest rate. This suggests

that we model the interest rate directly and simply use the pricing formula:

Bk = EQ(
1

1 + rk∆T
Bk+1|Fk). (1)

We discuss the notation. Fk represents the state of the world at time k, which

is known to us at time k. We use disrete compounding in this section, hence the
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discounting factor 1
1+rk∆T

. Interest rate is allowed to be random and varying with

time, that is why we need to put 1
1+rk∆T

inside the expectation.

There is indeed no need for the conditional expectation in the formula (1), as rk

is known at time k. However, in general we do need a conditional expectation, as in

the following formula

Bk = EQ(
N∏
i=k

1

1 + ri∆T
F |Fk). (2)

Here rk is known at time k but ri, k + 1 ≤ i ≤ N is not known until time i.

rk is referred to as the short rate. In the context of the discrete model, we

understand rk as the interest rate available for depositing with the money market

account (or borrowing) in the period [k, k + 1].

If we want to deposit for a longer period (say from time k to k+ 2) there are two

options. Either we deposit from time [k, k+1] with interest rate rk and then roll over

to time [k+1, k+2] with interest rate rk+1; or we can deposit from time [k, k+2] with

the spot rate R(k, k+ 2). The spot rate R(k,N) is simply the interest that we would

earn for depositing during time period [k,N ]. That is if we deposit 1 dollar at time

k and do not withdraw until time N then at time N we would receive 1 + R(k,N)

dollars. There must be a consistency between these rates; otherwise there would be

an arbitrage opportunity. In particular we have

B(k,N) =
1

(1 +R(k,N)∆T )N−k
= EQ(

N∏
i=k

1

1 + ri∆T
F |Fk).

The difference is as followed: R(k,N − k) is a random variable that is known at

time k. rk is also known at time k but ri, k + 1 ≤ i ≤ N is not known until time i.

Observe also that we assume here that R(k,N) is a compound interest rate that is

compounded at the end of each period. If R(k,N) is a simple interest rate the above

equation would read

B(k,N) =
1

(1 +R(k,N)(N − k)∆T )
= EQ(

N∏
i=k

1

1 + ri∆T
F |Fk).

That is, the interest is only compouned once at the maturity time N . We need to

rely on the context to distinguish between simple and compound interest rate.
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2 Stochastic short rate model

Now we turn to modelling rk, k = 0, · · · , N . One important observation here is that

we need to model rk directly under the risk neutral measure Q. That is we need

to take the risk neutral measure Q as given exogenously (maybe from working with

other financial dirvatives) and model rk under this measure. The reason is if our

market only consists of bond then there is no reference underlying, such as a stock,

for us to define Q upon. In the lack of such reference product, we take our default

risk neutral measure as q = 1− q = 1/2 for example.

We need to be careful on how to model rk. We can use the binomial approach

rk+1 = urk with probability q

= drk with probability 1− q;

but it make not be realistic as this allows for the interest rate to grow quite large

in some particular event (in contrast to the real world observation that interest rate

tends to stay around some fixed level, say right now close to 0%, for a fixed period of

time). If we want to avoid specifying a formula, we can just simply ‘fill in the nodes

of the binomial tree for the intrest rate value at that node. For example if N = 3 we

can specify

r3(uuu) = 0.03, r3(udu) = 0.025, rd(ddu) = 0.0125, rd(ddd) = 0.025,

and so on for r2, r1, r0. Once we have the interest rate tree, we can use formula (1)

to figure out the bond price with all maturities up to N .

3 The money market account

If we deposit 1 dollar at time k, we will earn 1 + rk∆T dollars at time k + 1. The

money market account Mk is the value at time k of the account that deposits 1 dollar

at time 0. That is

Mk =
k−1∏
i=0

(1 + ri∆T ).

Observe that even though Mk is random, Mk+1 is known at time k (since rk is de-

termined at time k). In this way we say the money market account processs Mk is

predictable.
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The money market account can be used in the pricing formula as followed: for

0 ≤ i < j ≤ N

Bi = EQ(

j−1∏
k=i

1

1 + rk∆T
Bj|Fi).

Observe that
∏j−1

k=i
1

1+rk∆T
=

Mj

Mi
and Mi is known at time i we can write the pricing

formula succintly as

MiBi = EQ(MjBj|Fi).

4 Option pricing in stochastic interest rate model

Consider a binomial tree model where we have the underlying S that follows the

model

Sk+1 = uSk with probability p

= dSk with probability 1− p.

Suppose we have a call option on S with strike K and expiration N . That is VN =

(SN −K)+. We want to find V0, given a stochastic interest rate model. To this end,

suppose that a stochastic interest tree has already be given as in section (2). Note

though that we cannot specify the risk neutral measure q = 1/2 by default as in that

section. The reason is because we have a reference underlying here. So we need to

use the definition:

Sk = EQ(
1

1 + rk∆T
Sk+1|Sk).

This implies

(1 + rk∆T )Sk = qkuSk + (1− qk)dSk,

or

(1 + rk∆T ) = qku+ (1− qk)d.

One can solve for qk from there. Note something subtle here. Not only that q depends

on k as r depends on k but it also depends on the random event that happens at
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time k. That is the qk in the above equation is a conditional probability. It is the

risk neutral probability that given an even ωk at time k, the next even twill be ωku:

PQ(ωku|ωk) = qk(ωk).

Once we can fill out all the risk neutral probabilities this way we can proceed to

compute the option price via the backward pricing method as we discussed before.

5 Coupon paying bond and future cash flow

So far we have discussed zero-coupon bond. That is bond with only a face value, here

denominated as 1 dollar, which is paid at the maturity time N . More generally, one

can consider a coupon paying bond with coupon rate C and face value F . That is

at each period k = 0, 1, · · · , N (determined by the bond, usually annually or semi-

annually) the bond holder receives C% of the face value and receive the face value

F dollars at the maturity time N . The pricing of such a coupon paying bond, given

an interest rate tree, is similar to the method discuss above. Indeed, we can look at

the zero-coupon bond as a future income stream that pays us Ck = C
100
F at time k.

We can compute the present-value C0
k of a future payment Ck at time k by the risk

neutral pricing formula

C0
k = EQ(

1

Mk

Ck).

Then the present value of the zero-coupon bond is the sum of the present values in

the future income stream:

C0 =
N∑
k=0

Ck
0 .

In the case of a coupon bond with a fixed coupon rate (say 5%) there is even a more

straightforward method to compute its present value without the need for modeling

the interest rate. Indeed, the present value of 1 dollar paid at time k is just B(0, k),

the price of a zero coupon bond that paids 1 dollar at time k. Thus in the above

formula, C0
k = B(0, k)Ck = B(0, k) C

100
F.

6 Yield to maturity

Precisely speaking, bond price is a function of two time variables: the current time k

and the maturity time N . Thus we write B(k,N) for the price at time k of a bond
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with maturity N . For a present value of time, say k = 0, we can discuss the price of

the bond that matures at time N = 1, 2, · · · . Term structure refers to the concept

of fixing a present time and varies the maturity of a fixed income security, typically

a bond. The term structure reflects the public opinion on how the interest rate will

behave in the future.

A particular quantity of interest is the bond’s yield to maturity. For a bond with

maturity at time N , the yield to maturity λ(0, N) is defined such that

B(0, N) =
1

(1 + λ(0, N)∆T )N
. (3)

If we plot B(0, N) as a function of N it will be a decreasing graph. However, if we

plot λ(0, N) as a function of N it will usually be an increasing graph. This reflects

the fact that people usually require a higher compensation for a longer duration of

the loan.

Furthermore, for a coupon paying bond with coupon rate C, face value F and

maturity N , its yield to maturity λ(0, N) is defined such that

B(0, N) =
N∑
k=0

C
100
F

(1 + λ(0, N)∆T )k
+

F

(1 + λ(0, N)∆T )N
. (4)

7 Forward rate agreement

A forward rate agreement (FRA) is a contract that allows the holder to pay a fixed

rate K(0, T1, T2) and receive a floating rate L(T1, T2) for the loan period [T1, T2].

Suppose all interests are simple. The contract holder will receive (for a notional

amount of 1 dollar)

(L(T1, T2)−K(0, T1, T2))(T2 − T1),

at time T2. Here L(T1, T2) is simply understood as the simple interest available for

depositing or borrowing 1 dollar in the period [T1, T2]. A typical quote for L(T1, T2)

follows the Libor (London Interbank Offered Rate). Libor rates are calculated for

5 currencies and 7 borrowing periods ranging from overnight to one year and are

published each business day by Thomson Reuters. For convenience, we can assume

L(T1, T2) falls into these 7 borrowing periods. If not, it can be figured out using certain

interpolation methods from the given Libor rates. We emphasize that L(T1, T2) is a

random variable that is only known at time T1 while K(0, T1, T2) is a constant that

is known at time t = 0.
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Assume T1, T2 are two points on our discrete grid. The simple Libor rate is related

to the compouding short rate as followed

1 + L(T1, T2)(T2 − T1) =
n∏

i=1

(1 + ri(ti+1 − ti)), (5)

where we assume t1 = T1 and tn = T2.

The forward rate f(0, T1, T2) is the fixed rate (the strike) K(0, T1, T2) so that the

FRA costs nothing to enter at the present time t = 0. It turns out that we can

calculate f(0, T1, T2) as followed:

f(0, T1, T2) =
1

T2 − T1

(
B(0, T1)

B(0, T2)
− 1

)
.

The reasoning is as followed: suppose we enter a FRA at time 0 and have 1 dollar

at time T1. We can either do nothing with it, or invest it with the forward rate

f(0, T1, T2) to receive (1+f(0, T1, T2))(T2−T1) at time T2. These two schemes should

have the same present value at time 0 to avoid arbitrage. That is

B(0, T1) = B(0, T2)(1 + f(0, T1, T2))(T2 − T1).

From this equation we can solve for f(0, T1, T2) as indicated.

This equation also suggests a replication scheme for the FRA as followed: at

time 0 we sell 1 FRA, short 1 share of zero coupon bond with maturity T1 and long

(1 + f(0, T1, T2))(T2 − T1) shares of zero coupon bond with maturity T2. At time T1

we receive 1 dollar from the FRA buyer and we use it to close out our short position

in the bond B(0, T1). At time T2 we receive (1 + f(0, T1, T2))(T2 − T1) from our long

position with the bond B(0, T2) and use it to close out our short position in the FRA

contract.

8 Interest rate futures

An interest rate future is a contract that costs nothing to enter, and allows the holder

to pay a fixed rate F (0, T1, T2) and receive a floating rate R(T1, T2) for the loan period

[T1, T2]. The contract holder is required, however, to post a margin account to reflect

the fluctuation in the contract price as time moves from t = 0 to t = T1.

In practice, the interest rate future is executed as followed:

1. The contract is settled at time T1 and the contract holder does not (typically)

enter into the loan period.
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2. The contract holder is required to post a margin account. If the future rate

F (t, T1, T2) increases, he has to deposit more money into the account. If the future

rate F (t, T1, T2) decreases he receives money into the account.

3. The future contract is quoted with the price 100− F (t, T1, T2) for 0 ≤ t ≤ T1.

Its price at time T1 is 100−R(T1, T2).

If the interest rate is constant then the futures rate and forward rate are equal.

However, in practice the forward rate is less than the future rate, due to the margining

requirement. This phenomenon is called the negative convexity of the futures rate.

Intuitively, it can be explained as followed. The margining always works against

the futures contract holder (and works for the futures contract seller). When they

receive margin, this will coincide with a drop in the rate at which the balance in the

margin account is rolled. When they have to deposit margin, this will coincide with

an increase in the borrowing rate. Thus if the forward rate is equal to the futures

rate, one can buy a forward rate agreement and sell a futures contract to profit from

the margining effect.

9 Duration and convexity of a bond

A bond price is a function of its convexity. See e.g. equations (3) and (4). Thus it

is equivalent to quote either the bond price or the yield to maturity; and more often

it is more important to look at the yield to maturity as an indication for the bond’s

“value”. The yield to maturity is affected by other variables, such as the short rate

(which may change by the FED’s decision, for example). Thus we want to know how

sensitive the bond price is with respect to a change in the yield to maturity. The

concept that captures this is called the bond’s duration:

D = − 1

B(0, T )

dB(0, T )

dλ(0, T )

= − d

dλ(0, T )
log(B(0, T )).

The unit of the yield to maturity λ(0, T ) used in this formula is in percentage (for

example yield going from 8 % per year ( λ(0, T ) = 0.08 ) to 9 % per year (λ(0, T ) =

0.09) ) . Thus the unit of duration D is percent change in price (since it is dB(0,T )
B(0,T )

) per

one percentage point change in yield per year. The duration D captures sensitivity

of bond price to interest rate.
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Remark: The definition we gave above technically is called the modified duration.

There is another concept called the Macaulay duration which measures the weighted

average time until cash flows are received. Let Ci be a sequence of future cash flow

that is received at time ti, whose present value at time t = 0 is Pi. The present value

of this cash flow is

V =
∑
i

Pi.

The Macaulay duration is defined as

DMacaulay =
∑
i

Piti
V
.

It turns out that the Macaulay duration and the modified duration are pretty similar

in practice. Thus we have the following important observation: the duration of a

zero coupon bond is equal to its maturity (under continuous compounding) and the

duration of a coupon paying bond is always less than its maturity. Generally speaking,

the longer the duration of a bond, the riskier it is and the higher its price volatility

is.

A related concept of duration is called the dollar duration. It is defined as

DV01 = − dB(0, T )

10000dλ(0, T )
.

Here λ(0, T ) is measured in the unit of basis point. One basis point equals .01 %,

hence the 10000 at the denominator. Dollar duration or DV01 is the change in price

in dollars, not in percentage. It gives the dollar variation in a bond’s value per unit

change (in basis point) in the yield.

A bond’s convexity is defined as

C =
1

B(0, T )

d2dB(0, T )

λ(0, T )2
.

Thus one can approximate the change in the bond price with respect to the change

in yield if one knows its (modified) duration and convexity as followed:

dB(0, T )

B(0, T )
≈ −Dmoddλ(0, T ) +

1

2
C(dλ(0, T ))2.

Given a portfolio consisting of n bonds with present value Pi, i = 1, · · · , n; mod-

ified durations Di, i = 1, · · · , n and convexities Ci, i = 1, · · · , n, we can calculate
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the duration and convexity of the portfolio as the weighted average of the individual

convexity:

Dportfolio =
n∑

i=1

DiPi

P
,

where P =
∑n

i=1 Pi and

Cportfolio =
n∑

i=1

CiPi

P
.

10 Interest rate swaps

An interest rate swap, set over a period of times t0, t1, · · · , tn is like a sequence of FRA

where at each time ti one party (referred to as the payer) pays an agreed upon (fixed)

rate in exchange for a floating rate, typically the Libor during the period [ti, ti+1].

The party who receives the fixed rate (and pays the floating rate) is referred to as the

receiver. The contract is entered at time t = 0 and the first swap payment happens

at t = t1.

If we denote the fixed rate as K then at each time ti the paying leg receives

(L(ti−1, ti)−K)(ti − ti−1).

We compute the present value of the total cash flow of the fixed leg and the floating

leg separately. The present value of the total cash flow of the fixed leg is

n∑
i=1

K(ti − ti−1)B(0, ti).

To compute the present value of the floating rate payment, we need to compute the

present value Pi of a payment of the type L(ti−1, ti)(ti − ti−1) received at time ti.

This is because L(ti−1, ti) is not known until time ti−1 and we need to use risk neutral

valuation to compute its present value. Following the method we discuss aboved, we

have

Pi = EQ
( i∏

k=1

1

1 + rk(tk − tk−1)
L(ti−1, ti)(ti − ti−1)

)
.

It turns out that we can express Pi in a more informative way using our analysis

with the FRA. Recall that Pi is the price such that one is indifferent between re-

ceiving Pi right now or receiving L(ti−1, ti)(ti − ti−1) at time ti. If one to enter in
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to a FRA in the period [ti−1, ti] with the forward rate f(0, ti−1, ti), one would also

be indifferent between receiving a fixed payment f(0, ti−1, ti)(ti − ti−1) or a float-

ing payment L(ti−1, ti)(ti − ti−1). We know the present value of the fixed payment

f(0, ti−1, ti)(ti − ti−1) is

B(0, ti)f(0, ti−1, ti)(ti − ti−1) = B(0, ti)
1

ti − ti−1

(
B(0, ti−1)

B(0, ti)
− 1)(ti − ti−1)

= B(0, ti−1)−B(0, ti).

This implies that

Pi = B(0, ti−1)−B(0, ti),

as well. Indeed, we can derive this result using the relation (5).

Thus the present value of the total cash flow for the floating payment leg is just

n∑
i=1

Pi = 1−B(0, tn).

Similar to the forward rate, a swap rate S0 is the fixed rate H such that the swap

contract costs nothing to enter. In other words, it is the fixed rate such that the

present value of the fixed leg payment equals the present value of the floating leg

payment. Using our above results, this means

S0

n∑
i=1

(ti − ti−1)B(0, ti) = 1−B(0, tn).

Thus the swap rate is

S0 =
1−B(0, tn)∑n

i=1(ti − ti−1)B(0, ti)
.

Remark: A swap contract has zero value at time 0 but most definitely will not at

time ti, i > 0. Indeed at time t = 1, a swap contract entered at time 0 will be similar

to a n − 1 paying period contract entered at time 1. The difference is the rate has

already been set for the contract entered at time 0 (namely S0). On the other hand,

if one enters a new contract at time t = 1, the swap rate will be

S1 =
1−B(t1, tn)∑n

i=2(ti − ti−1)B(t1, ti)
.

It is easy to see that unless S1 = S0, the contract entered at time 0 will not have zero

value at time 1. In particular, if S0 > S1 then the contract has positive value for the

receiver side of the contract and negative value for the payer side of the contract.
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