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1 Local extrema

Consider the function f(x, y) : R2 → R. We interpret f as represent the height of

the terrain at a point (x, y). Suppose that f is smooth, that is there is no sudden

jump or sharp increase or decrease in the terrain height. Then it is of interest for us

to determine some criteria for a point (x0, y0) such that f(x, y) is highest (or lowest)

at (x0, y0), compared with the neighboring points that are within a a radius R from

(x0, y0). Note that we do NOT require (x0, y0) to be a global maximum or minimum

point. We only require that locally f(x0, y0) is no smaller or no larger than all of its

neighbor. The radius R can depend on the point (x0, y0) as well.

The terminologies for these points are the so-called local maximum:

f(x0, y0) ≥ f(x, y), for all x, y ∈ D((x0, y0), R)

and local minimum

f(x0, y0) ≤ f(x, y), for all x, y ∈ D((x0, y0), R).

Here D((x0, y0), R) refers to the disk of radius R around (x0, y0). That is the collection

of all points of distance less than or equal to R away from (x0, y0).

We also want to mention the saddle point. A saddle point is an umbrella term for

“all other points” that satisfies the first derivative criterion (see the below section)

but fail to be a max or a min.

1



Figure 1.1: A saddle point between two maxima

1.1 The first derivative criterion

Consider a one dimensional function f(x). How do we tell that a point x0 is a potential

extremum? If f ′(x0) exists and is either positive or negative then clearly x0 can NOT

be an extremum. Thus x0 is a candidate for an extremum if we have no information

about the sign of f ′ at x0. That is when either f ′(x0) = 0 or f ′(x0) does not exist.

If we fixed a value y = y0 for the function f(x, y) then f(x, y) becomes a one

dimensional function f(x, y0). It is also clear that if f has a local extremum at

(x0, y0) then f(x, y0) has a local extremum at x = x0. Applying the same argument,

we conclude that either fx(x0, y0) = 0 or fx(x0, y0) does not exist. Similar conclusion

applies to fy(x0, y0). This is the so-called Fermat’s Theorem for local extrema.

1.2 The second derivative criterion

We now have a necessary condition for local extrema. Can we say something about a

sufficient condition for local extrema. From Calculus 1, we know that f ′(a) = 0 does

Not imply a is a local extremum of f (for example f(x) = x3). More importantly, we

would like to have a criterion to tell us whether the extrema is a max or a min. The
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following condition gives the answer: let

D = fxxfyy − f 2
xy

∣∣∣
(x,y)=(x0,y0)

.

(This assumes that all the second order derivatives exist and are continuous near

(x0, y0), hence we must have fx(x0, y0) = fy(x0, y0) = 0.) Then we have

D fxx Conclusion

> 0 > 0 local min

> 0 < 0 local max

< 0 saddle point

= 0 inconclusive

We remark that the inconclusive case means that we cannot conclude whether

(x0, y0) is a max, min or saddle point based solely on the first and second derivative

information. More specifically, we have fx(x0, y0) = fy(x0, y0) = 0 and the point

(x0, y0) can be either a max, min or saddle point.

The second derivative test is similar to the result you have seen in Calculus 1.

The reason is because both rely on the Taylor’s expansion. First recall the Taylor’s

expansion in one dimension:

f(x) ≈ f(x0) +
1

2
f ′′(x0)(x− x0)2,

(since f ′(a) = 0). Thus f is at a local max at a if f ′′(x0) < 0 and a local min

at a if f ′′(x0) > 0. If f ′′(x0) = 0 then the test is inconclusive because the Taylor

approximation now becomes

f(x) ≈ f(x0) + f (3)(x0)(x− x0)3.

If f (3)(x0) 6= 0 then we are at a saddle point because f(x) increases in one direction

and decreases in another direction away from a. However, it could be the case that

f (3)(x0) = 0 and we have to go to the fourth derivative etc. So we can not say much

when f ′′(x0) = 0.
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1.3 Two dimensional Taylor expansion

Our table for the second derivative test comes from the two dimensional Taylor ex-

pansion for f(x, y):

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

+
1

2
fxx(x0, y0)(x− x0)2 +

1

2
fyy(x0, y0)(y − b)2

+ fxy(x0, y0)(x− x0)(y − y0). (1)

This formula comes from the one dimensional Taylor epxpansion for f(x, y) in the

direction (a+ tδ, b+ tσ) as a function of t. Here we think of δ, σ as representing the

small change of x away from a and y away from b. Writing φ(t) = f(a + tδ, b + tσ)

we have

φ′(t) = ∇f ·
〈
δ, σ
〉

= δfx(x0 + tδ, y0 + tσ) + σfy(a+ tδ, b+ tσ)

φ′′(t) = δ∇fx ·
〈
δ, σ
〉

+ σ∇fy ·
〈
δ, σ
〉

= δ(δfxx + σfxy) + σ(δfxy + σfyy).

Since for t small

φ(t) ≈ φ(0) + φ′(0)t+
1

2
φ′′(0)t2,

replacing φ(t) and its derivatives with the corresponding expressions in f we have

f(a+ tδ, b+ τε) ≈ f(x0, y0) + fx(x0, y0)δt+ fy(x0, y0)σt

+
1

2

(
fxx(x0, y0)δ

2 + fyy(x0, y0)σ
2 + 2fxxfyy(x0, y0)δσ

)
t2.

Replacing δt with (x− x0) and σt with (y − y0) gives us the result.

1.4 Sign of quadratic form

At the point (x0, y0) where fx(x0, y0) = fy(x0, y0) = 0 the RHS of (1) reduces to

1

2
fxx(x0, y0)(x− x0)2 +

1

2
fyy(x0, y0)(y − y0)2 + fxy(x0, y0)(x− x0)(y − y0).

Thus the change away from (x0, y0) of f(x, y) is captured by

1

2
fxx(x0, y0)(x− x0)2 +

1

2
fyy(x0, y0)(y − y0)2 + fxy(x0, y0)(x− x0)(y − y0).
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To study its sign, we simplify the expression to considering

ax2 + 2cxy + by2.

(The a, b, c here represent fxx, fyy, fxy respectively. You can think of it as analyzing

the expression at (x0, y0) = (0, 0).) We first suppose a 6= 0 then completing the square

gives

ax2 + 2cxy + by2 = a(x+
c

a
y)2 +

ba− c2

a
y2.

Thus it is easy to see that if a > 0 and ba−c2 > 0 then the form is always positive

(corresponding to (x0, y0) as a min), as well as if a < 0 and ba− c2 > 0 then the form

is always negative (corresponding to (x0, y0) as a max).

If ba − c2 < 0 then the two expressions a and ba−c2
a

always have opposite signs.

Thus the quadratic expression can be positive or negative.

When ba − c2 = 0 then the test is inconclusive. The reason is a bit subtle. First

if a = 0 then it is clear that the whole expression ax2 + 2cxy + by2 = 0. And it may

seem that if ba− c2 = 0 and a > 0 then the quadratic expression is positive so

Remarks:

The equation (1) can be expressed compactly in matrix form:

[x− a, y − b]

[
fxx(x0, y0) fxy(x0, y0)

fxy(x0, y0) fyy(x0, y0)

][
x− a
y − b

]
.

This is called a quadratic form with the symmetric matrix

A =

[
fxx(x0, y0) fxy(x0, y0)

fxy(x0, y0) fyy(x0, y0)

]
.

You can intuitively believe that the quadratic form’s sign depends on the determinant

of the matrix A and the sign of its (1, 1) position. For example the quadratic forms

x2 + y2 is non-negative and is associated with the matrix

A =

[
1 0

0 1

]
.

Note that the determinant of A is 1 > 0 and A11 = 1 > 0. On the other hand the

quadratic form −x2 − y2 is non-positive and is associated with the matrix

A =

[
−1 0

0 −1

]
.
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Note that the determinant of A is 1 > 0 and A11 = −1 > 0. We mention this

representation because quadratic form is more general than the proof we gave above

for the sign of quadractic expression. One can generally study the expression uTAu

for a vector u and a symmeric matrix A.

1.5 Examples of inconclusive second derivative test

Consider

f 1(x, y) = x2 + y4

f 2(x, y) = −x2 − y4

f 3(x, y) = x2 − y4.

You can verify that in all of these cases

f i
xx(0, 0) = 2

f i
xy(0, 0) = f i

yx(0, 0) = f i
yy(0, 0) = 0, i = 1, 2, 3.

Thus the second order derivative test is inconclusive here. Yet you can see that at

(0, 0), f 1 has a min, f 2 has a max and f 3 has a saddle point.

Figure 1.2: The function x2 + y4
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Figure 1.3: The function −x2 − y4

Figure 1.4: The function x2 − y4
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2 Global extrema

If we consider f(x, y) over the whole plane R2 then f may or may not have a global

max or a global min. For example f(x, y) = x2 +y2 has a global min at (0, 0) but has

no global max. On the other hand, if we restrict f(x, y) to a compact region R (say

the disk of radius 1 around (0, 0)) then f is guaranteed to have a global max and a

global min. Global here is with respect to the region R we are discussing.

We outline the steps to find the global max and min over a region R:

a. Find all critical points of f (that is points (x, y) such that fx(x, y) = fy(x, y) =

0) inside the region R.

b. Consider f on the boundary of the region R (which is a closed curve that

contains the region R inside). This reduces f to a one dimensional equation. Find

all critical points of f on the boundary of the region R.

c. If the boundary is not smooth (like the boundary of the rectangle (1, 0), (0, 1), (−1, 0), (0,−1))

then also consider the corner points of the boundary.

d. Compare the values of f on all of the points found in steps a to d. You will

find the global min and the global max of f among them.
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