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1 The gradient vector

Definition 1.1. Let f(x, y) be a function that maps from R2 to R. The gradient of

f is defined as the vector

∇f =
〈
fx, fy

〉
.

If we have f(x, y, z) as a function that maps from R3 to R then the gradient vector

can similarly be defined as

∇f =
〈
fx, fy, fz

〉
.

Remark: We have seen that the equation of the tangent plane to a surface z =

f(x, y) at a point (a, b) is

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

That is the normal vector of the tangent plane at this point is〈
fx, fy,−1

〉
.

Thus the gradient vector can be seen geometrically as capturing the local behavior

of the surface around the point.
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Figure 1.1: The gradient flow of a function

Before we develop further property of the gradient vector, we mention some basic

calculus rules:

∇(f + g) = ∇f +∇g
∇(cf) = c∇f, c a constant

∇(fg) = f∇g + g∇f.

1.1 The chain rules

There are many different ways one can compose functions of the type we have dis-

cussed up to now. First if we have a function F : R → R and f : Rn → R, n = 2, 3

then F ◦ f is a function from Rn to R. Thus the gradient of F ◦ f makes sense and

we have

∇(F ◦ f) = F ′∇f.

Example: Let F (z) =
√
z and f(x, y) = x2 + y2 then

F (f(x, y)) =
√
x2 + y2
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and

∇F (f(x, y)) =
〈 x√

x2 + y2
,

y√
x2 + y2

〉
.

Second, we can have f(x, y, z) : R3 → R and we can imagine evaluating f

along a curve. That is (x, y, z) are functions of t :
〈
x(t), y(t), z(t)

〉
. In this case

f(x(t), y(t), z(t)) is a function from R to R and we have

d

dt
f(x(t), y(t), z(t)) = ∇f ·

〈
x′(t), y′(t), z′(t)

〉
.

The above equation can be written compactly as

d

dt
f(r(t)) = ∇f · r′(t).

Example: Let f(x, y) = y
x

and
〈
x(t), y(t)

〉
=
〈

cos(t), sin(t)
〉
. Then

f ′(r(t)) =
〈−y
x2
,

1

x

〉∣∣
(x,y)=(cos t,sin t)

·
〈
− sin t, cos t

〉
=

sin2 t

cos2 t
+ 1 = sec2 t.

The last chain rule we discuss is the generalization of the second case mentioned

above. We also have a function f(x, y, z) : R3 → R. But this time we do not simply

assume x, y, z are uni-variate function (function of 1 variable t). They themselves can

be surfaces, that is x, y, z can be functions of t1, t2, · · · , tn. The composition

f(x(t1, · · · , tn), y(t1, · · · , tn), z(t1, · · · , tn))

becomes a function from Rn to R. Thus it also makes sense to dicuss the gradient of

such a function. The result is

∇f(x(t1, · · · , tn), y(t1, · · · , tn), z(t1, · · · , tn)) = fx∇x+ fy∇y + fz∇z.

It may be clearer to state the above formula in terms of the partial derivative of

f with respect to each variable t1, · · · tn:

ftk = fxxtk + fyytk + fzztk .
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1.2 Implicit differentiation

Suppose we have a surface that is described by an equation F (x, y, z) = 0. The

understanding is that there exists z = f(x, y) a surface so that F (x, y, f(x, y)) = 0.

The point is we can NOT find such a function f explicitly. Actually writing z =

f(x, y) is not precise because it can be the case that for a point (x, y) there are many

values of z that satisfies F (x, y, z) = 0. The notation z = f(x, y) is just to motivate

the idea that if we limit ourselves to a particular part of the surface, then indeed we

can view z = f(x, y) and discuss the partials of z with respect to (x, y). The simplest

example is a sphere: x2 + y2 + z2 = 1. Here z is NOT a function of x, y but if we

limit ourselves to the upper or lower part of the sphere then it is.

So our ultimate goal is to find the partials of z with respec to (x, y) at a point.

The technique is to differentiate the equation F (x, y, z) = 0 with respect to x and

keeping in mind:

∂

∂x
F (x, y, z) =

∂

∂y
F (x, y, z) = 0

∂

∂x
y =

∂

∂y
x = 0

∂

∂x
x =

∂

∂y
y = 1.

Thus it follows that

∂

∂x
F (x, y, z) = Fx + Fzzx.

This gives you an equation to solve for zx. Similarly

∂

∂x
F (x, y, z) = Fy + Fzzy

gives you an equation to solve for zy.

Example: Consider the equation x2 + y2 + z2 = 2. Differentiate both sides with

respect to x gives

2x+ 2zzx = 0.

Thus zx = −x/z, for z 6= 0. Thus the derivative of z with respect to x at (1, 0, 1) is

−1.
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2 Directional derivative

Consider f(x, y) : R2 → R. We can imagine f as described the “height” at a point

(x, y) relative to ground zero (if f is negative we’re just going below the ground). Now

imagine we start at a point (x0, y0) at time t = t0 and walk in a direction described

by a vector u =
〈
u1, u2

〉
. The interest is of course how fast the terrain changes as we

walk. More specifically as the direction we follow is described as:

r(t) =
〈
x0, y0

〉
+ u(t− t0),

we are interested in measuring

d

dt
f(r(t)), t = t0.

It is of pratical interest, for example to find the direction u that has the steepest

rise (or the steepest descend); or for a smooth climb a direction that has relatively low

rate of change. All of these information can be captured via the directional derivative

vector. We discussed here the example for f : R2 → R but you can think of a similar

interpretation for f : R3 → R. We interpret in that case f(x, y, z) as measure, for

example the temperature at a point (x, y, z) and we are interested in finding out how

fast the temperature is changing as we move along a direction u in space.

Just one remark before we give the definition: we would want u to be the unit

vector. This is because clearly how fast or slow we go would affect how fast we see

the terrain change. But this is NOT an intrinsic property of the terrain. Making u be

the unit vector will guarantee that we only measure the rate of change of the terrain

itself and not being influenced by how fast we walk.

Applying the chain rule we have

d

dt
f(r(t)) = ∇f · r′(t) = ∇f · u.

We call this the directional derivative of f along the direction of u and denote it

as ∇uf .

2.1 The gradient as the direction of steepest ascent

We now discuss the problem of finding the vector u that achieves the maximum rate

of change (steepest ascent) and minimum rate of change (steepest descent). Recall

that

d

dt
f(r(t)) = ∇f(r(t)) · u.
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We want to choose u to maximize ∇f(r(t)) · u. But we know that

∇f(r(t)) · u = ‖∇f(r(t))‖ cos(θ),

where θ is the angle between u and ∇f(r(t)). We have used the property that u is a

unit vector here. But since −1 ≤ cos(θ) ≤ 1 clearly ∇f(r(t)) · u is maximized when

θ = 0, that is when we move along ∇f(r(t)) and minimized when θ = π, that is when

we move in opposite direction of ∇f(r(t)). We say that the gradient is the direction

of steepest ascent. Note that this result also tells us that the direction of smallest

change (in terms of magnitude) is when θ = π/2 that is in the orthogonal direction

with ∇f(r(t)).
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