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1 Partial derivatives

Consider f(x, y) : R2 → R. f is naturally a function of two variables. However, if

we fixed one of the variable, for example set y = 0, then f(x, 0) is a single-variable

function that we have studied in Calculus 1. Then it makes sense to discuss the

derivative in x of the function f(x, 0), at a point x = a namely

d

dx
f(a, 0) = lim

h→0

f(a+ h, 0)− f(a, 0)

h
.

But you see there is nothing special about the point 0 in the above analysis. In

general, we can fix y around any value c and discuss the derivative in x of the single

variable function f(x, c). Then we observe that we can drop the letter c altogether

and just remember that when we differentiate in x we fix the variable y. Thus we

arrive at the notion of the partial derivative of f(x, y) with respect to x at a point

(x, y) = (a, b) :

∂

∂x
f(a, b) = fx(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h
.
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Similarly one can define the partial derivative of f(x, y) with respect to y:

∂

∂y
f(a, b) = fy(a, b) = lim

h→0

f(a, b+ h)− f(a, b)

h
.

Observe that fx is still a multi-variate function in (x, y). For example if

f(x, y) = x+ y2

then fx(x, y) = 1.

Note that fx and fy are two different functions. For example in the above if

f(x, y) = x+ y2

then fx(x, y) = 2y.

Because the first order partial derivatives fx, fy are again functions of (x, y) we

can define their partial derivatives. These will be called the second order partial

derivatives, and there can be four possibilities: fxx, fxy, fyx, fyy. An example will

clarify: if

f(x, y) = x3y2
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then

fxx = 6xy2,

fyy = 2x3,

fxy = 6x2y,

fyx = 6x2y.

Note that in this example fxy = fyx = 6x2y. This is not a coincidence. In general,

the mixed second order patial derivatives (or we just say the mixed partial derivatives)

are equal if f is “nice” enough. More specifically, we have

Theorem 1.1. Clairaut’s Theorem

If fxy and fyx are both continuous function on a disk D then fxy = fyx on this

disk.

The only thing you should remember about this theorem is the suffficient condition

for the mixed derivative to be equal is that they are continuous. A counter example

to Clairaut’s Theorem is the function

f(x, y) = xy
x2 − y2

x2 + y2
, (x, y) 6= (0, 0)

= 0, (x, y) = (0, 0).

You can verify that fxy(0, 0) and fyx(0, 0) exist but are not equal.

2 Differentiability and tangent planes

What does it mean for a function f(x) to be differentiable at a point a? It means

f(x) is close enough to a linear function (a line) for x sufficient close to a. More

specifically we write

f(x) ≈ f(a) + f ′(a)(x− a),

for x close to a. The importance in the above intuition is that x can be close to a in

either direction (left or right of a). For example, the function f(x) = |x| is close to a

linear function namely x for x > 0 but to a different linear function namely −x for

x < 0. Thus it is not differentiable at x = 0.

The corresponding linear function for the multivariate case is a plane. Thus we

want to say f(x, y) is differentiable at a point (x0, y0) if it is close to the tangent plane

ax+ by + cz = d for (x, y) close to (x0, y0).
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Figure 2.1: A surface and its tangent plane at a point

We need to address two points:

What are a, b, c, d in the coefficients of the tangent plane?

What do we mean by being close to the plane precisely?

To answer the first question, note that if we fix y = y0 then z = f(x, y0) becomes

a curve. This curve can be approximated by the tangent line

f(x, y0) ≈ f(x0, y0) + fx(x0, y0)(x− x0).

Similarly when we fix x = x0 we have

f(x0, y) ≈ f(x0, y0) + fy(x0, y0)(y − y0).

So in general, we can hope to have

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0). (1)

The equation

z(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

represents a plane so this is our candidate for the tangent plane.
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How do we capture closeness from the surface f(x, y) to the tangent plane ? Note

that it is not simply enough to require

lim
(x,y)→(x0,y0)

∣∣∣f(x, y)− f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)
∣∣∣ = 0. (2)

This is because ANY other plane that goes through (x0, y0) has this property as

long as f(x, y) is continuous at (x0, y0). Denoting the tangent plane as p(x, y) then

the appropriate requirement is

lim
t→t0

|f(r(t))− p(r(t))|
t− t0

= 0, (3)

where r(t) be an arbitrary differentiable curve such that r(t0) = (x0, y0).

Example: Let f(x, y) = x2 + y2. Then the tangent surface to f(x, y) at (1, 1) is

p(x, y) = 2 + 2(x− 1) + 2(y − 1).

Now let r(t) =
〈
x(t), y(t)

〉
be an arbitrary differentiable curve. Then

f(r(t))− p(r(t)) = x(t)2 + y(t)2 − 2− 2(x(t)− 1)− 2(y(t)− 1)

= (x(t)2 − 2x(t)− 1) + (y(t)2 − 2y(t)− 1).

Since x(t) is differentiable at t0 and x(t0) = 1 we have

lim
t→t0

x(t)2 − 2x(t)− 1

t− t0
= lim

t→t0
2x(t)x′(t)− 2x′(t) = 0,

by L’Hospital rule. Similar conclusion holds for y(t). Thus we have showed that (3)

is true for f(x, y) = x2 + y2 and p(x, y) = 2 + 2(x− 1) + 2(y − 1).

We conclude by showing for a “wrong” plane (3) does not hold. Indeed consider

the plane p(x, y) = 2 + 3(x− 1) + 4(y − 1). then

f(r(t))− p(r(t)) = x(t)2 + y(t)2 − 2− 3(x(t)− 1)− 4(y(t)− 1)

= (x(t)2 − 3x(t) + 2) + (y(t)2 − 4y(t) + 3).

Again applying L’Hospital rule we have

lim
t→t0

x(t)2 − 3x(t) + 2

t− t0
= lim

t→t0
2x(t)x′(t)− 3x′(t) = −1,

lim
t→t0

y(t)2 − 4y(t) + 3

t− t0
= lim

t→t0
2y(t)y′(t)− 4y′(t) = −2.
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Thus (3) is NOT true for the plane p(x, y) = 2 + 3(x− 1) + 4(y − 1).

We say a function f(x, y) is differentiable at (x0, y0) if (2) holds. Note also that

we do not have a notion of THE derivative of f(x, y) at (x0, y0). You have already

seen two candidates of it: fx(x0, y0) and fy(x0, y0). Thus in general we can only talk

about derivative of f(x0, y0) as we approach (x0, y0) from a particular direction. This

is the notion of directional derivative, which will be dicussed in the next lecture.

We conclude by stating an abstract result that gives an easier way to decide when

f(x, y) is differentiable at (x0, y0): f is differentiable at (x0, y0) if there is a disk D

around (x0, y0) so that fx and fy exist and are continuous on D.

2.1 Tangent plane and linear approximation

The equation (1) has a pratical application, that is linear approximation of a function

at a point. Suppose we want to calculate a complicated expression: (3.99)3(1.01)4(1.98)−1.

This one is not easily done by hand (which is a prolem back in the day when computer

is not as readily available). However, we can approximate it by the tangent plane to

the function f(x, y, z) = x3y4z−1 at the point (x0, y0, z0) = (4, 1, 2). The advantage of

linear approximation is that it is easy to compute linear expression. Indeed we have

f(x, y, z) ≈ f(4, 1, 2) + fx(4, 1, 2)(x− 4) + fy(4, 1, 2)(y − 1) + fz(4, 1, 2)(z − 2),

for (x, y, z) = (3.99, 1.01, 1.98) which is sufficiently close to (4, 1, 2). Thus the problem

boils down to computing fx, fy, fz at (4, 1, 2). Since we have the explicit formula for

the partial derivatives, the approximation can be easily done.

We remark that from a computational point of view, the computation of fx, fy, fz

may not be trivial (imagine a case where you don’t have the explicit formula for

fx, fy, fz. Furthermore, this problem is designed for easy approximation as the point

(3.99, 1.01, 1.98) is close to a nice point (4, 1, 2). In reality we may have to evaluate

at a point where there is no “nice point” close by, for example at (π,
√

2,
√

3). In this

case some other method besides linear approximation is necessary.
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