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1 Introduction

In this chapter, we study functions that map from Rn to R, n = 2, 3. The most

common interpretation is to view the domain as the R2 plane or the R3 space, and

the function as giving the property of the corresponding point in the plane or in the

space. For example, we can look at r(x, y) =
√
x2 + y2 or r(x, y, z) =

√
x2 + y2 + z2

as the distance from a point to the origin.

When n = 2, it is also very commmon to view the mapping f(x, y) as describing

the height z of a point (x, y) on the plane. In this case, we have the graph of a surface〈
x, y, f(x, y)

〉
in R3. For example, f(x, y) = x2 + y2 describes a paraboloid in R3.
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2 Traces and level curves

When analyzing the graph of f(x, y), it is helpful to see the behavior of the graph

as we fixed one of its dimension: x = a or y = b or f(x, y) = c. All of these actions

have the effect of reducing the dimension of the graph into a curve. Looking at the

curves resulting from f(a, y) or f(x, b) is referred to as the vertical traces and looking

at the curves resulting from f(x, y) = c is referred to as the horizontal trace or the

level curve. For example, you can easily see that the vertical traces of the paraboloid

f(x, y) = x2 + y2 are parabolas while the horizontal traces or level curves are circles.

On the other hand, the level curves of the hyperbolic paraboloid

f(x, y) = ax2 − by2, a, b > 0

are hyperbolas while its vertical traces are parabolas:

Figure 2.1: Horizontal trace of a hyperbolic paraboloid at c = 0.5

For functions from R3 to R, we can also analyze f(x, y, z) = c. This time we refer

to it as the level surfaces.
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3 Limits

3.1 Definition

In Calculus 1, we discussed the concept of

y0 = lim
x→x0

f(x)

for a function f : R → R. Intuitively this means as x is close enough to x0 we

have f(x) is closed enough to y0. Note that here we do not require f(x0) to be

defined (or equal to y0). This intuition is captured rigorously by the ε− δ definition:

y0 = limx→x0 f(x) if for all ε > 0 we can find δ > 0 so that |x − x0| ≤ δ implies

|f(x)− f(x0)| ≤ ε.

What about the case when we have multi-variate functions f(x, y) or f(x, y, z) ?

What does it mean for us to say

y0 = lim
x→x0

f(x)?

Notice that we have switched to the vector notation for a generic point x in R2 or R3.

Clearly we still want the above intuition to hold. We just have to replace the distance

between two points in R : |x − x0| with the distance between two points in R2 or

R3 : ‖x−x0‖. Thus we also have the following definition for limit: y0 = limx→x0 f(x)

if for all ε > 0 we can find δ > 0 so that |x− x0| ≤ δ implies |f(x)− f(x0)| ≤ ε.

Just as in Calculus 1 where a limit does not have to exist, for example limx→0
cosx
x

,

here we also have no guarantee whether a particular limit exists before we do some

analysis. However, if a limit exists, then it is unique. That is we cannot have the case

that

y0 = lim
x→x0

f(x)

y1 = lim
x→x0

f(x)

y0 6= y1.

This property is a direct consequence of the definition and will be a very useful criteria

to show when a limit does not exist, as you shall see.

But before we discuss further about limits, we list out some elementary properties

of limits which can be proved using ε− δ definition. However, such proofs are beyond

the scope of this course and can be found in a real analysis course, for example.

3



Assuming that the limits limx→x0 f(x) and limx→x0 g(x) both exist, then

lim
x→x0

cf(x) = c lim
x→x0

f(x)

lim
x→x0

[f(x) ◦ g(x)] = lim
x→x0

f(x) ◦ lim
x→x0

g(x),

where ◦ is a generic operation that can stand for +,×, /. In the case of division, we

also need to assume limx→x0 g(x) 6= 0.

3.2 A non-existence example

Example: Does the limit of lim(x,y)→(0,0)
x2

x2+y2
exist? If so compute it.

Note that the limit definition does not tell us how to do the computation. But

first we need to see whether the limit exists or not. One thing you should keep in

mind when dealing with limit for multi-variate function is we can get close to a point

x0 along many directions. The uniqueness property tells us that if the limit exists

then this limit does not depend on which direction we approach x0 from. We can

utilize this property to show the limit does not exist by pointing out two particular

directions that give different limit values.

In our case, we can approach (0, 0) along the x-axis, the y-axis, or the line x = y.

These are just 3 cases among infinitely many possibilities. But let’s see what we get.

lim
(x,y)→(0,0),y=0

x2

x2 + y2
= lim

x→0

x2

x2
= 1

lim
(x,y)→(0,0),x=0

x2

x2 + y2
= 0

lim
(x,y)→(0,0),x=y

x2

x2 + y2
= lim

x→0

x2

2x2
= 1/2.

So the limit does not exist here by the uniqueness property. Note also that the

potential “bad” thing here is the division by 0 at (x, y) = (0, 0). This is what causes

the ill-behavior of the function x2

x2+y2
around this point.

3.3 Computation of limit in general

Example: Does the limit of lim(x,y)→(1,1) x
2 + y2 exist? If so compute it.

Here you can have the intuition that nothing “bad” can happen and we really

want to say the limit is simply 12 +12 = 2. But at this stage we cannot do so without
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invoking the ε − delta definition and show that it is true. This is clearly a tedious

process. We will revisit this after we introduce the notion of continuous function and

justify the direct procedure of “plugging in” to compute limit.

4 Continuity

4.1 Definition

Again, in Calculus 1 we say a function f(x) is continuous at x0 if the limit as x→ x0

exists and equals to f(x0). The same intuition and definition applies here. We just

replace x0 and x by its multivariate analog x0 and x.

Just as in limits, we also have the summation, product and division (at the points

where the denominator is non-zero) of continuous functions are continuous. Also

composition of continuous function is continuous.

These properties give us a rich “dictionary” of continuous functions. For example,

polynomials in single variable are continous. Using the product and summation rules,

we conclude polynomials in multi-variable are continuous:

f(x, y) =
N∑
i=1

cix
niymi . (1)

Quotients of polynomials are continuous where the denominator is not zero:

f(x, y) =
g(x, y)

h(x, y)
,

where g, h are of the form (1).

Since transcendental functions are continuous (as single variate function), we also

have functions of the type φ(f(x, y)) being continuous where φ is a transcendental

function cos, sin, exp and f(x, y) is of the form (1) by the composition rule.

Example: f(x, y) = x2y3 + 3x10y, g(x, y) = x2+y2−2xy
x2+y2+1

, h(x, y) = ex
2+y2 are contin-

uous.

4.2 Evaluation of limits of continuous functions

Since the limit of f(x, y) at x0 exists and is equal to f(x0) if f is continous at x0,

we can use our knowledge of which functions are continuous to evaluate the limit

by plugging in. For example, we can now say lim(x,y)→(1,1) x
2 + y2 = 2 because
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f(x, y) = x2 + y2 is continuous everywhere. On the other hand, you see why the

function x2

x2+y2
needs careful analysis for its limit at (0, 0): it is not continuous there.
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