Arc length, speed and curvature

Math 251

September 19, 2015

1 Arc length and speed

Given $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ and a particle travelling along $\mathbf{r}(t)$ during the time interval $a \leq t \leq b$, we want to find the distance travelled by this article. We shall denote the distance travelled during the time interval $[a, b]$ as $s(b)-s(a)$.

If the motion is a straight line motion, that is

$$
\mathbf{r}(t):=\mathbf{r}_{0}+t \mathbf{v}
$$

the answer is clearly $\|\mathbf{v}\|(b-a)=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t$.
In the general case that $\mathbf{r}(t)$ is a differentiable curve, given a time interval $\left[t_{1}, t_{2}\right]$ that is sufficiently small, we have discussed in the previous lecture that $\mathbf{r}(t)$ can be approximated by straight line motion:

$$
\mathbf{r}(t) \approx \mathbf{r}\left(t_{1}\right)+\mathbf{r}^{\prime}\left(t_{1}\right)\left(t-t_{1}\right), t_{1} \leq t \leq t_{2} .
$$

Thus the distance travelled during the time interval $\left[t_{1}, t_{2}\right]$ is approximately

$$
s\left(t_{2}\right)-s\left(t_{1}\right) \approx\left\|\mathbf{r}^{\prime}\left(t_{1}\right)\right\|\left(t_{2}-t_{1}\right) .
$$

Now given a time interval $[a, b]$, we can partition it into n equal subintervals $a=t_{0}<t_{1}<\cdots<t_{n}=b$. If n is lare enough so that each subinterval is sufficiently small, then the total distance travel is approximately

$$
s(b)-s(a) \approx \sum_{i=0}^{n-1}\left\|\mathbf{r}^{\prime}\left(t_{i}\right)\right\|\left(t_{i+1}-t_{i}\right) .
$$

Figure 1.1: Approximation of a curve by line segments
Taking the limit as $n \rightarrow \infty$ intuitively this sum will approach the $s(b)-s(a)$. Since the RHS is a Riemann sum, it will approach the Riemann integral of $\left\|\mathbf{r}^{\prime}(t)\right\|$ against $d t$. That is we have

$$
\begin{equation*}
s(b)-s(a)=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t \tag{1}
\end{equation*}
$$

A rigorous proof for (1) can be obtained by analyzing the error in the approximation $s\left(t_{i+1}\right)-s\left(t_{i}\right) \approx\left\|\mathbf{r}^{\prime}\left(t_{i+1}\right)\right\|\left(t_{i+1}-t_{i}\right)$ and shows that the sum of the errors over all i goes to 0 as $n \rightarrow \infty$. We will just accept it here.

We can consider a motion starting at a reference point t_{0} and assign $s\left(t_{0}\right)=0$. Then we can express s as a function of $t, t \geq t_{0}$ as followed:

$$
s(t)=\int_{t_{0}}^{t}\left\|\mathbf{r}^{\prime}(s)\right\| d s
$$

We refer to $s(t)$ as the arc length function associated with the motion $\mathbf{r}(t)$. Clearly $s^{\prime}(t)=\left\|\mathbf{r}^{\prime}(t)\right\|$ is the speed of the motion at time t.

1.1 Arc Length Parametrization

We have discussed that there are many ways to parametrize the same curve. In particular, given a curve $\mathbf{r}(t)$ suppose we replace t by a function $t=g(s)$ then effectively we have changed the clock system from t to s. This has the effect of altering the velocity and acceleration of the motion. In particular

$$
\frac{d}{d s} \mathbf{r}(g(s))=\mathbf{r}^{\prime}(g(s)) g^{\prime}(s)
$$

That is we have multiplied a factor $g^{\prime}(s)$ to the velocity vector $\mathbf{r}^{\prime}(t)$. If we only care about the geometry of the curve, then obviously the speed the particle traversed along the curve is irrelevant. In particular, a choice of parametrization that normalizes this speed to 1 (that is making the motion have unit velocity) has certain nice properties. We call this the arc length parametrization and describe it below.

Consider a motion $\mathbf{r}(t)$ starting at t_{0} and its associated arc length function $s(t)$. Suppose that $\left\|\mathbf{r}^{\prime}(t)\right\|>0$ for all $t \geq t_{0}$ that is the particle never stops, then $s(t)$ is a strictly increasing function. Thus for any given non-negative number s, we can find a unique $t \geq t_{0}$ so that $s(t)=s$.

This value of t, considers as a function of s, is the inverse function to the arc length function:

$$
t(s)=t
$$

It answers the question How much time have gone by when the distance travelled is s units of length.

Remark: There is a slight abuse of notation here where we use the letter s as a real number as well as s as the arc length function of t (similarly for t as a real number as t as a function of the arc length s). This avoids the complication of adding more notation of a function $g(s)$ as in the text book. You can always distinguish which meaning we use since a function has the notation $s(t)$ while a number has the notion s.

We recall a important property of the derivative of an inverse function: if g is differentiable and g^{-1} exists then g^{-1} is also differentiable and

$$
\frac{d}{d s} g^{-1}(s)=\frac{1}{g^{\prime}(s)}
$$

The proof is from the chain rule and the identity $g\left(g^{-1}\right)(s)=s$. It follows from this result that $t(s)$ is also differentiable and $t^{\prime}(s)=\frac{1}{s^{\prime}(t)}$ where $s=s(t)$ and $t=t(s)$.

We can then consider the parametrization $\mathbf{r}(t(s))$, which is also referred to as the arc length parametrization and investigate its property in the next section.

2 Curvature

2.1 Unit tangent vector

Let $\mathbf{r}(t)$ be a given motion then $\mathbf{r}^{\prime}(t)$ is its veloctiy or tangent vector at time t. The tangent vector captures how fast and in which direction the particle is moving at
time t along the curve. Now if we are more interested in a curve's geometric property than how fast the particle is moving along the curve (that is we only care about the direction in which the curve is following) then it is better to look at the unit tangent vector:

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\|\mathbf{r}(t)\|}
$$

Figure 2.1: Unit tangent vector
If we use arc length length parametrization then automatically the tangent vector is a unit tangent vector:

$$
\begin{aligned}
\left\|\frac{d}{d s} \mathbf{r}(t(s))\right\| & =\left\|\mathbf{r}^{\prime}(t(s))\right\|\left|t^{\prime}(s)\right| \\
& =\left\|\mathbf{r}^{\prime}(t(s))\right\| \frac{1}{\left|s^{\prime}(t)\right|} \\
& =\left\|\mathbf{r}^{\prime}(t)\right\| \frac{1}{\left\|r^{\prime}(t)\right\|}=1
\end{aligned}
$$

2.2 Curvature

The unit tangent vector $\mathbf{T}(t)$ tells us which direction the curve is following at time t. A straight line motion has $\mathbf{T}(t)$ as a constant unit vector $\mathbf{e}_{\mathbf{v}}$ for all t. Thus for a straight line motion $\left\|\frac{d}{d t} \mathbf{T}(t)\right\|=0$. This is consistent with the fact that a straight line never changes its direction. We say a sraight line has zero curvature.

Now clearly the more quickly a curve changes its direction, the "sharper" the curve. How do we capture this notion precisely? An obvious candidate is $\left\|\frac{d}{d t} \mathbf{T}(t)\right\|$ but this quantity is not intrinsic to the curve: it depends on an exogenous clock t
that is related to how fast the particle moves. A better "clock" to use is the arc length parametrization $t(s)$. That is we define the curvature of a curve as

$$
\kappa(s)=\left\|\frac{d \mathbf{T}(s)}{d s}\right\|,
$$

where $\mathbf{T}(s)=\mathbf{T}(t(s))=\frac{d}{d s} \mathbf{r}(t(s))$ is the unit tangent vector obtained using the arc length parametrization. Intuitively, $\kappa(s)$ measures how fast T is changing with respect to one unit change in arc length, which is exactly what we want.

Example: Arc length of a circle
Let

$$
\mathbf{r}(t)=\langle R \cos t, R \sin t\rangle, 0 \leq t \leq 2 \pi
$$

represents the motion a long a circle in \mathbb{R}^{2} centered at the origin with radius R. The arc length function is $s(t)=R t$. Thus $t(s)=\frac{s}{R}$. The arc length parametrization is

$$
\mathbf{r}(t)=\langle R \cos (s / R), R \sin (s / R)\rangle, 0 \leq t \leq 2 \pi
$$

Thus

$$
\begin{aligned}
\mathbf{T}(s) & =\langle-\sin (s / R), \cos (s / R)\rangle \\
\kappa(s) & =\frac{1}{R}
\end{aligned}
$$

This is consistent with the fact that the larger the circle is, the more it looks like a straight line locally and the less its curvature.

2.3 Curvature computation

Arc length parametrization may not be easy to compute explicitly. So from a comutational point of view it might be more convenient to work under the orignal clock system t and still obtain the curvature κ as a function of t. It can be accomplished by the chain rule:

$$
\kappa(s)=\left\|\frac{d}{d s} \mathbf{T}(t(s))\right\|=\left\|\mathbf{T}^{\prime}(t(s))\right\|\left|t^{\prime}(s)\right|=\frac{\left\|\mathbf{T}^{\prime}(t(s))\right\|}{\left|s^{\prime}(t)\right|}=\frac{\left\|\mathbf{T}^{\prime}(t(s))\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}
$$

Thus, given a time t we have simply

$$
\kappa(t)=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}
$$

This formula is already useful as it is. But we can exploit some additional property of $\mathbf{T}(t)$ to write it as

$$
\kappa(t)=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}
$$

This formula may or may not be useful depending on the situation. We present it for completeness. We present its proof in the following section.

2.4 Unit normal vector

Since $\|\mathbf{T}(t)\|=1$, for all t from our previous discussion we have

$$
\mathbf{T}(t) \cdot \mathbf{T}^{\prime}(t)=0, \forall t
$$

That is $\mathbf{T}^{\prime}(t)$ is orthogonal to $\mathbf{T}(t)$, the direction of motion. We define the unit normal vector $\mathbf{N}(t)$ as

$$
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}
$$

Figure 2.2: Unit normal vector
Again it is a vector that captures some intrinsic geometric property of the curve without paying attention to the speed of the motion. Indeed, denoting $v(t)=\left\|\mathbf{r}^{\prime}(t)\right\|$ the speed of the particle at time t then we have

$$
\mathbf{T}^{\prime}(t)=\left\|\mathbf{T}^{\prime}(t)\right\| \mathbf{N}(t)=\kappa(t)\left\|\mathbf{r}^{\prime}(t)\right\| \mathbf{N}(t)=\kappa(t) v(t) \mathbf{N}(t)
$$

We now show

$$
\kappa(t)=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}
$$

For simplicity we will present the computation without the dependent of t, i.e. we write \mathbf{r}, v, κ instead of $\mathbf{r}(t), v(t), \kappa(t)$ etc. Observe that

$$
\begin{aligned}
\mathbf{r}^{\prime} & =v \mathbf{T} \\
\mathbf{r}^{\prime \prime} & =v^{\prime} \mathbf{T}+v \mathbf{T}^{\prime}=v^{\prime} \mathbf{T}+v^{2} \kappa \mathbf{N} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime} & =v \mathbf{T} \times\left(v^{\prime} \mathbf{T}+v^{2} \kappa \mathbf{N}\right) \\
& =v^{3} \kappa \mathbf{T} \times \mathbf{N}
\end{aligned}
$$

Since \mathbf{T} is orthogonal to \mathbf{N},

$$
\|\mathbf{T} \times \mathbf{N}\|=\|\mathbf{T}\|\|\mathbf{N}\| \sin (\pi / 2)=1
$$

The conclusion follows.

References

[1] Carlen, Eric. Multivarible Calculus, Linear Algebra and Differential Equations, Chapter 1-7.

