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1 Functions from R to R3

Now that we have studied vectors R3, we can study functions whose values are R2

or R3 vectors. A simple example of such a function is the position of a particle

(for example, an airplane) in 3-d space as a function of time. Because time is one

dimensional, precisely these are the functions that map from R to R2 or from R to

R3. This is what the textbook refers to as vector-valued functions.

A popular example of a vector valued function is the spiral:

r(t) =
〈
4 cos t, 4 sin t, t

〉

Figure 1.1: Graph of a vector-valued function

Another example of a vector valued function is the parametric representation of

a line we covered in the previous chapter:

r(t) = r0 + vt.
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Figure 1.2: A line as a vector-valued function

Remark: It is the convention to refer to functions from from R to R3 as vector-

valued functions. While we will follow the convention, you should note that this

name only refers to its range; but we should also pay attention to the domain of the

function. As you can easily imagine, there are functions that map from R3 to R,

which we will study in the next chapter, as well as functions that map from R3 to

R3, which you may study in another math course.

1.1 Curve as the graph of a vector-valued function

As you probably have noticed, the graph of a vector-valued function is a curve, and not

a surface. This is because the domain of these functions is one dimensional. (Compare

vector-valued functions with the parametric representation of a plane, described in

Lecture 3, for example).

As t ranges from −∞ to ∞, one can trace a path that the particle whose position

is represented by r(t) moves a long the curve. In this way, one can have the same

curve but different paths by using different parametrizations of the same curve. For

example,

r1(t) = r0 + vt

and

r1(t) = r0 − vt
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for t ∈ R describe the same line but one moves along v and the other moves in the

opposite direction of v as t increases. Another example is r1(t) =
〈

cos(t), sin(t)
〉

and

r2(t) =
〈

sin(t), cos(t)
〉
. You can easily see that they both describe the circle on the

plane, centered at the origin with radius 1. As t increases, the first one describes

counterclock wise motion while the second one describes clock wise motion.

Example - Parametrization of an ellipse:

Find the parametric representation of the ellipse:

x2

a2
+
y2

b2
= 1.

Ans: Since cos2(t) + sin2(t) = 1, there must exist t, 0 ≤ t ≤ 2π so that

x = a cos(t)

y = b sin(t).

Thus r(t) =
〈
a cos(t), b sin(t)

〉
, 0 ≤ t ≤ 2π is the parametric representation of the

ellipse.

Example - Parametrization of a tilted ellipse:

Find the parametric representation of the ellipse:

5x2 + 5y2 − 6xy = 8.

Note that this time we cannot simply view this equation as of the form cos2(t) +

sin2(t) = 1, for some t as in the previous example. This is because the usual Cartersian

coordinate system is not the best to describe this ellipse. Recall in our discussion in

the change of coordinate system that the best one to describe this ellipse is the one

with the orthonormal basis î = 1√
2

〈
1, 1
〉
, ĵ = 1√

2

〈
− 1, 1

〉
.

If r(t) is the vector representing a point on the ellipse then we have showed that

r(t) = (r(t) · î)̂i + (r(t) · ĵ)̂j. (1)

Let

u = r(t) · î
v = r(t) · ĵ,

we seek an equation to describe u, v. But (1) reads

x =
1√
2

(u− v)

y =
1√
2

(u+ v),
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where (x, y) is the coordinate of a point on the ellipse in the original Cartesian system

with i =
〈
1, 0
〉
, j =

〈
0, 1
〉
. Plug this into the equation of the ellipse and after

simplification, we have

u2 + 4v2 = 8.

Thus following the same argument as the previous example, we can find t so that

u = 2
√

2 cos(t)

v = 2 sin(t).

Thus the paramateric representation of the ellipse is

r(t) = (2
√

2 cos t)̂i + (2 sin t)̂j, 0 ≤ t ≤ 2π.

Example - Intersection of two surfaces: Another way for a curve to arise is as an

intersection of two surfaces. For example, it is clear that two planes intersect in a

line. We consider here the intersection between a sphere and a plane.

Find the parametric representation of the intersection of the sphere x2+y2+z2 = 1

and the plane x+ y + z = 1.

Ans: By replacing z = 1− x− y into the first equation, we have

2x2 + 2y2 − 2x− 2y − 2xy = 0,

or

x2 + y2 − x− y − xy = 0.

You can note that this is an equation of an ellipse. This makes sense as we know

the curve should be a circle and this ellipse is the projection of this circle on the plane

x+ y + z = 1 onto the xy-plane.

To solve for y, we just re-write the above as a quadratic equation in y:

y2 − (1 + x)y + x2 − x = 0,

which has solution

y =
1 + x±

√
(1 + x)2 − 4(x2 − x)

2

=
1 + x±

√
−3x2 + 6x+ 1

2
.
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Thus we arrive at a parametrization of the curve as

r(t) =
〈
t,

1 + t±
√
−3t2 + 6t+ 1

2
, 1− t− 1 + t±

√
−3t2 + 6t+ 1

2

〉
,

where the domain of this function is t such that −3t2 + 6t+ 1 ≥ 0.

Note that this is a very awkward parametrization, which is due to our working

with the Cartesian coordinate system i, j,k. Since geometrically it is clear that the

intersection is a circle on the plane x+ y + z = 1, we should use a coordinate system

that is connected with this plane somehow. We consider the solution using a more

suitable coordinate system below.

A better solution:

Note that the plane x+ y + z = 1 can be written as〈
1, 1, 1

〉
· r1 = 1,

where r1 represents a generic point on the plane. On the other hand the sphere can

be written as

‖r2‖ = 1,

where r2 represents a generic point on the sphere.

We use the coordinate system

u =
1√
3

〈
1, 1, 1

〉
v =

1√
2

〈
− 1, 1, 0

〉
w =

1

2

〈
1, 1,−2

〉
.

(There is a systematic way to find such as system, called the Gram-Schmidt pro-

cedure. We will not discuss it here. The important point is you should recognize u

as the normal vector of the plane, v,w are parallel to the plane as they are both

orthogonal to u).

Now if r(t) is the parametric representation of the curve arising from the inter-

section, then 〈
1, 1, 1

〉
· r(t) = 1,

‖r(t)‖ = 1.
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Thus r(t) · u = 1√
3

and we have

r(t) = (r(t) · u)u + (r(t) · v)v + (r(t) ·w)w

=
1√
3
u + (r(t) · v)v + (r(t) ·w)w.

Since u,v,w are orthornormal, by the Pythagorean theorem we have

‖r(t)‖2 =
1

3
+ (r(t) · v)2 + (r(t) ·w)2 = 1.

Thus we can find t so that√
2

3
cos(t) = r(t) · v√

2

3
sin(t) = r(t) ·w.

Thus the parametric representation of the curve is

r(t) =
1√
3
u +

√
2

3
cos(t)v +

√
2

3
sin(t)w, 0 ≤ t ≤ 2π.

2 Calculus of vector-valued functions

2.1 Limit and continuity

Definition 2.1. A vector-valued function r(t) approaches the limit u as t approaches

t0 if

lim
t→t0
‖r(t)− u‖ = 0.

We denote this as limt→t0 r(t) = u.

Example:

lim
t→0

〈
4 cos t, 4 sin t, t

〉
=
〈
4, 0, 0

〉
since

‖
〈
4 cos t, 4 sin t, t

〉
−
〈
4, 0, 0

〉
‖2 = 16(cos t− 1)2 + 16 sin2(t) + t2,

and clearly

lim
t→0

16(cos t− 1)2 + 16 sin2(t) + t2 = 0.
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You may note that in the above example,

lim
t→0

4 cos t = 4

lim
t→0

4 sin t = 0

lim
t→0

t = 0.

Thus we suspect that

lim
t→t0

〈
f(t), g(t), h(t)

〉
=
〈

lim
t→t0

f(t), lim
t→t0

g(t), lim
t→t0

h(t)
〉

if the limit makes sense on both sides. That this is true is stated as Theorem 13.1

in the textbook (also see the proof therein). We call this taking the limit component

wise.

Definition 2.2. A vector-valued function r(t) is continuous at t0 if

lim
t→t0

r(t) = r(t0).

2.2 Differentiability and velocity

Physical motions are usually not only continuous but also differentiable. This is

captured by our notion of velocity. To say r(t) is differentiable roughly means that

if you observe r(t) for a sufficiently short time interval, it looks like motion along a

straight line. Thus we first investigate the differentiability of a straight line motion

and then of general motion later on.

Straight line motion: Let r(t) = r0 + tv be a parametrized line. Then for any

s < t, the distance between r(s) and r(t) is

‖r(t)− r(s)‖ = (t− s)‖v‖.

Thus

‖v‖ =
‖r(t)− r(s)‖

t− s
,

and we see that the distance travelled per unit of time is ‖v‖. This is what we think

of as the speed of the motion. The direction of the motion is given by the constant

unit vector

T = ev =
1

‖v‖
v.
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Clearly the velocity of the straight line motion is given by v. Also note that

lim
t→t0

r(t)− r(t0)

t− t0
= v.

General motion: Now suppose that r(t) is an arbitrary continuous motion in R3.

Suppose there exists a parametrized line x(t) = r0 + (t − t0)v, where r0 = r(t0) so

that

lim
t→t0

‖r(t)− x(t)‖
t− t0

= 0.

We have by triangle inequality

‖r(t)− r0
t− t0

− v‖ ≤ ‖r(t)− x(t)

t− t0
‖+ ‖x(t)− r0

t− t0
− v‖

Because

lim
t→t0
‖x(t)− r0

t− t0
− v‖ = 0,

we have

lim
t→t0

r(t)− r0
t− t0

= v.

The above limit can be interpreted as

r(t) ≈ r0 + v(t− t0),

for t sufficiently close to t0. In this sense we say the motion of r(t) is approximately

the straight line motion starting at r0 with velocity v around t0. We say that r(t) is

differentiable at t0; the derivative of r(t) at t0 or the tangent vector of r(t) at t0 is v

and the tangent line to r(t) at r0 is r0 + v(t− t0).

2.3 Computation of derivative

Suppose r(t) =
〈
f(t), g(t), h(t)

〉
is differentiable at t0 and its derivative at t0 is r(t0) =〈

a, b, c
〉
. From the above discussion, it means that

lim
t→t0

〈
f(t), g(t), h(t)

〉
−
〈
f(t0), g(t0), h(t0)

〉
t− t0

=
〈
a, b, c

〉
.

But since the limit can be taken componentwise, it means that

lim
t→t0

f(t)− f(t0)

t− t0
= a.
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Figure 2.1: Tangent of a vector-valued function

Thus f is differentiable at t0 and its derivative is a. Similar conclusion holds for g

and h. Thus r(t) is differentiable if and only if all of its components are differentiable

(as scalar functions). In this case, we can also take derivative component wise. We

write

r′(t) =
〈
f ′(t), g′(t), h′(t)

〉
2.4 Differentiation rules

Assume that r1(t), r2(t) are differentiable. Then

d

dt

(
r1(t) + r2(t)

)
= r′1(t) + r′2(t)

d

dt

(
cr1(t)

)
= cr′1(t), for all scalar c

d

dt

(
f(t)r1(t)

)
= f ′(t)r1(t) + r′1(t)f(t) for all scalar functionf(t)

d

dt
r
(
f(t)

)
= r′(f(t))f ′(t) for all scalar functionf(t)

d

dt

(
r1(t) · r2(t)

)
= r1(t) · r′2(t) + r′1(t) · r2(t)

d

dt

(
r1(t)× r2(t)

)
= r1(t)× r′2(t) + r′1(t)× r2(t).

All of these results can be proved by applying the definition and taking the limit

component wise. As a particular application, we have the following lemma

Lemma 2.3. Let r(t) be a curve such that ‖r(t)‖ = c, a constant for all t. Then r(t)

is always orthogonal to its tangent vector r′(t).
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Proof. Since r(t) · r(t) = ‖r(t)‖2 = c we have

0 =
d

dt

(
r(t) · r(t)

)
= 2r(t) · r′(t).

The conclusion follows.

An interpretation of this lemma is the well-known geometry fact that the tangent

to a circle is orthogonal to its radius.

Figure 2.2: Orthogonality between tangent and radius of a circle

Next, we consider the uniform circular motion

r(t) = ρ(cos(ωt)u + sin(ωt)v), t ∈ R,

where u,v are two arbitrary orthonormal vectors. This is circular motion with radius

ρ, angular speed ω (since the period of motion is 2π
ω

) on a plane determined by u,v.

We compute that

r′(t) = ρω
(
− sin(ωt)u + cos(ωt)v

)
.

Thus ‖r′(t)‖ = ρω is a constant. Applying the above lemma we have

r′′(t) · r′(t) = 0.

By Newton’s second law, F = ma where a = r′′(t). This says that the force

acting on a uniform circular motion is along the radius (since it is orthogonal to the

tangent). Indeed it points toward the center by explicit computation of r′′(t) and

notice that its direction is opposite of r(t).
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