
Lines and Planes in R3

Math 251

September 17, 2015

1 Planes in R3

1.1 Representation by equations

Just as two points P,Q, or a vector
−→
PQ uniquely determine a line, three points

P,Q,R, or two vectors
−→
PQ,
−→
PR uniquely determine a plane in R3.

In lecture 1, we viewed a line as determined by a point P0 on the line and a

directional vector v. A similar point of view can also be developed for the plane. We

can determine a plane P by a point P0 that is on the plane and a “directional” vector

n that is orthogonal to P (that is, orthogonal to every line on P). We refer to n as

the normal vector of P .

Figure 1.1: A plane and its normal vector

We have the following result:

1



Proposition 1.1. Let P be the plane through P0 = (x0, y0, z0) with normal vector

n = 〈a, b, c〉. Then any point P = (x, y, z) on P has to satisfy

n · 〈x− x0, y − y0, z − z0〉 = 0. (1)

Example 1.2. Consider the plane passing through the point P0 = (3, 2, 1) with normal

vector n = 〈1, 2, 3〉. Then any point (x, y, z) on this plane must satisfy

(x− 3) + 2(y − 2) + 3(z − 1) = 0,

that is

x + 2y + 3z = 10.

Remark: The above example shows that, the collection of points (x, y, z) satisfying

the linear equation

ax + by + cz = d

is a plane in R3, with normal vector 〈a, b, c〉. To completely determine the plane, we

just have to find a point P0 that is on the plane. But that is easy. Since it cannot be

the case that a = b = c = 0, WLOG suppose a 6= 0. Then P0 = (d/a, 0, 0) belongs to

this plane.

1.2 Parametric representation of planes in R3

In the above subsection we describe a plane via a linear equation ax + by + cz = d.

This description relies on a point P0 on the plane and a normal vector n to the plane.

On the other hand, a point P0 on a plane P and two vectors u,v parallel to P also

completely describe P . This point of view gives us the parametric representation of

a plane (compared with the parametric representation of a line).
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Figure 1.2: A point and two vectors determine a plane

For example, consider the plane x+ 2y + z = 10. Then a point P = 〈x, y, z〉 (here

we use the vector representation of P ) belongs to the plane if and only if

P = 〈x, y, 10− 2y − x〉 = 〈0, 0, 10〉+ x〈1, 0,−1〉+ y〈0, 1,−2〉.

Here we have P0 = (0, 0, 10) belonging to the plane and u = 〈1, 0,−1〉,v =

〈0, 1,−2〉 parallel to the plane. To verify that u,v are parallel to the plane, we just

need to check u·n = 0, where n = 〈1, 2, 1〉 is the normal vector to the plane. Similarly

for v.

Thus any point P on the plane can be written as 〈s, t, 10− 2s− t〉 where s, t ∈ R.

We refer to this as the parametric representation of a plane.

2 Equations for lines in R3

Let (x, y, z) be the collection of points belonging to a line L in R3. Then we have

showed that (x, y, z) can be represented as (x0 + tv1, y0 + tv2, z0 + tv3), t ∈ R where

P0 = (x0, y0, z0) is a point on the line and v = 〈v1, v2, v3〉 is a directional vector of

the line. This is of course the parametric representation of a line in R3.

Can we represent lines by equations as we did above with planes? The answer is

yes. Indeed, observe that for any point (x, y, z) on the line, the vector 〈x − x0, y −
y0, z − z0〉 must be parallel with the directional vector v. Thus we have

v × 〈x− x0, y − y0, z − z0〉 = 0.

This is the equation of a plane in R3.
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Denoting x = 〈x, y, z〉 as a generic point on the line L, we can re-write the above

equation as

v × x = d, (2)

where d = 〈x0, y0, z0〉 × v.

You should note the similarity between this and the equation of a plane (1). Note

the crucial differences that the equation of a line involves a cross product (while that

for plane involves a dot product). Second, the RHS of the equation of a line is a vector

(while that of a plane is a real number).

Two vectors are equal if and only if their components are equal. Thus (2) is

actually a system of equation. We demonstrate with an example.

Example 2.1. Let v = 〈1,−2, 1〉 and d = −〈1/2, 1, 5/2〉, the system of equations

v × x = d

is

−y − 2z = −1/2

x− z = 1

2x + y = 5/2, (3)

since 〈1,−2, 1〉 × 〈x, y, z〉 = 〈−y − 2z, x− z, 2x + y〉.
You can check that this system has the solution

(x, y, z) = (1 + t, 1/2− 2t, t), t ∈ R,

which is the parametric equation of a line.

Remark: Observe that (3) describes the intersection of three planes in R3. This

intersection can be empty if the RHS is not chosen carefully (see figure 2.1). Indeed,

if d is not orthogonal to v then (2) cannot have a solution. On the other hand, the

intersection of two planes is sufficient to describe a line, so one (and only one) of the

equations of (3) is redundant (Another way to say this is the rank of the system (3)

is always 2). This can be showed rigorously but we will skip the proof.
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Figure 2.1: Possible intersections of three planes

3 Distance from a point

3.1 Distance from a point to a line

Given a point P and a line L : x(t) = x0 + tv, we want to know : a) the distance

between P and L and b) the point P ′ on the line where this distance is achieved.

To understand the problem, you should observe that for any point Q on the line,

the distance PQ is defined. However, there is one point P ′ where this distance is

minimized. It also happens that at this point P ′, PP ′ is orthogonal to L.

Figure 3.1: Distance from a point to a line

By this observation, to answer a), we note that since x0 is a point on L, the
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distance between P and L is just the orthogonal component of p − x0 along the

directional vector v: ‖(p − x0)⊥‖, where p is the vector representation of P . Using

our previous result on dot product, we thus have

‖(p− x0)⊥‖ = ‖(p− x0)− ((p− x0) · ev)ev‖ ,

where again ev := 1
‖v‖v is the unit vector in the direction of v.

It would also follow that the point P ′ on L that achieves this minimum distance

is

P ′ = x0 + ((p− x0) · ev)ev.

Problem: Show that for any other point Q on L, the distance PP ′ ≤ PQ.

3.2 Distance from a point to a plane

Given a point P and a plane P we want to know : a) the distance between P and P
and b) the point P ′ on the plane where this distance is achieved.

Recall that a plane is uniquely determined by a point x0 on the plane and its nor-

mal vector n. You should also observe that for any point Q on the plane, the distance

PQ is defined. However, there is one point P ′ where this distance is minimized. It

also happens that at this point P ′, PP ′ is orthogonal to P .

Figure 3.2: Distance from a point to a plane

By this observation, to answer a), we note that since x0 is a point on L, the

distance between P and L is just the parallel component of p− x0 along the normal

vector n: ‖(p− x0)||‖, where p is the vector representation of P .

Using our previous result on dot product, we thus have

‖(p− x0)||‖ = |(p− x0) · en| ,
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where again en := 1
‖n‖n is the unit vector in the direction of n.

It would also follow that the point P ′ on L that achieves this minimum distance

is

P ′ = x0 + (p− x0)⊥ = p− ((p− x0) · en)en,

where (p− x0)⊥ is the orthogonal projection of (p− x0) with respect to n.
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