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1 Parametrized surface

Definition 1.1. A surface in 3-d is a collection of points (x(u, v), y(u, v), z(u, v))

where u, v are parameters belonging to a certain domain in the u, v plane.

The simplest example of a parametrized surface is given by a function f(x, y) :

R2 → R. Suppose (x, y) ∈ [a, b]× [c, d]. Then the collection of points

(x, y, f(x, y)), (x, y) ∈ [a, b]× [c, d]

represents a surface in 3-d and the parameters domain is the rectangle [a, b]× [c, d].

Example 1.2. The collection of points (x, y, x2 + y2), (x, y) ∈ [−1, 1]× [−1, 1] repre-

sents the surface of a paraboloid in 3-d with parameters domain [−1, 1]× [−1, 1].

The parameters domain does not have to be rectangular, as the following example

makes clear.

Example 1.3. Consider the upper-half unit sphere with center at the origin. One

way to represents it is by the collection of points (x, y,
√

1− x2 − y2) but now the

domain of (x, y) is −
√

1− x2 ≤ y ≤
√

1− x2,−1 ≤ x ≤ 1, namely the unit circle on

the plane with center at the origin.

There are obviously more than one way to parametrize a surface. One possible

criterion to choose the parametrization is such that the parameter domain is rectan-

gular. For example, a better way to parametrize the upper unit sphere would be via

the spherical coordinate.

Example 1.4. Consider again the upper-half unit sphere with center at the origin. A

better parametrization for this surphace is (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)) where

0 ≤ φ ≤ π/2, 0 ≤ θ ≤ 2π.
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2 Tangent plane to a surface at a point

Consider a surface S : (x(u, v), y(u, v), z(u, v)) at a point (u0, v0). If we fix u0 and

run along v then we get a curve (x(u0, v), y(u0, v), z(u0, v)). The tangent vector of

this curve at v0 is

Tv(u0, v0) =
〈
xv(u0, v0), yv(u0, v0), zv(u0, v0)

〉
.

Similarly when we fix v0 and rin along u we obtain another curve and a tangent vector

Tu(u0, v0) =
〈
xu(u0, v0), yu(u0, v0), zu(u0, v0)

〉
.

The surface S is said to be normal at (u0, v0) if the normal vector

n(u0, v0) := Tu(u0, v0)×Tv(u0, v0)

is non-zero.

The tangent plane to the surface S is the plane through (x(u0, v0), y(u0, v0), z(u0, v0))

with normal vector n(u0, v0).

Example 2.1. Consider the sphere with radius R and center at the origin with

parametrization (R sin(φ) cos(θ), R sin(φ) sin(θ), R cos(φ)) where 0 ≤ φ ≤ π, 0 ≤ θ ≤
2π. We have

Tθ = R
〈
− sin(φ) sin(θ), sin(φ) cos(θ), 0

〉
Tφ = R

〈
cos(φ) cos(θ), cos(φ) sin(θ),− sin(φ)

〉
.

Then the inward normal vector is

n = Tθ ×Tφ = −R2 sinφ
〈

sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)
〉

= −R2 sin(φ)er,

where again er(x, y, z) :=

〈
x,y,z
〉

√
x2+y2+z2

. We can easily verify that in spherical coordinate,

er(R, θ, φ) =
〈

sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)
〉
.

Similarly we have the outward normal vector n = Tφ ×Tθ = R2 sin(φ)er.

Remark 2.2. Note that in the above calculation, the normal vector at the point

(0, 0, 1) (or in spherical coordinate φ = 0) is 0. Of course there is a normal vector

to the unit sphere at (0, 0, 1). However, we could not capture it with our calculation
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using spherical coordinate. This is a reflection of a deep fact about the sphere not being

equivalent to a flat surface (in this case the flat rectange 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π).

To see that this is a fundamental geometric fact and not just a flaw with the

spherical coordinate, note that in the rectangular coordinate (x, y,
√

1− x2 − y2 we

cannot define the normal vector at the boundary z = 0.

3 Scalar surface integral

Let S(u, v) be a surface. Fix a point (u0, v0) on S. From (u0, v0) we can move a small

(signed) distance du in the u direction along the surface S. Approximately we will

be at the point

S(u0, v0) + Tu(u0, v0)du =
〈
x(u0, v0) + xu(u0, v0)du, y(u0, v0) + yu(u0, v0)du,

z(u0, v0) + zu(u0, v0)du
〉
.

Similarly, if we can a small (signed) distance dv in the v direction along the surface

S and we approximately will be at

S(u0, v0) + Tv(u0, v0)du =
〈
x(u0, v0) + xv(u0, v0)dv, y(u0, v0) + yv(u0, v0)dv,

z(u0, v0) + zv(u0, v0)dv
〉
.

In conclusion, if we move along the rectangle

(u0, v0); (u0 + du, v0); (u0, v0 + dv); (u0 + du, v0 + dv)

then along the surface S we approximately move along the parallelogram

S(u0, v0) ; S(u0, v0) + Tu(u0, v0)du

S(u0, v0) + Tv(u0, v0)dv ; S(u0, v0) + Tu(u0, v0)du+ Tv(u0, v0)dv.

This approximation is exact if S is a plane in 3d, for example. The area of this

parallelogram is

‖Tu(u0, v0)du×Tv(u0, v0)dv‖ = ‖Tu(u0, v0)×Tv(u0, v0)‖dudv
= ‖n(u0, v0)‖dudv.

Now suppose S(u, v) is defined for (u, v) in some region R. As we go over all (u, v)

in a partition of R and sum up all the areas of the parallelograms at (u, v) then we

3



obtain approximately the surface area of S. The approximation gets better as the

partition becomes finer. Thus we conclude S, the surface area of S is equal to

S =

∫∫
R
‖n(u, v)‖dudv.

For a scalar function f(u, v) defined on R we can also define∫∫
R
f(u, v)‖n(u, v)‖dudv. (1)

If f(u, v) is interpreted as the density (charge, mass) of the surface then the double

integral (1) captures the total charge or mass of the surface.

4 Vector surface integral

Similar to vector line integral, we also have vector surface integral. Let F be a vector

field and S(u, v), (u, v) ∈ R be a surface in R3. The unit vector of S at a point (u0, v0)

is defined by

en(u0, v0) =
n(u0, v0)

‖n(u0, v0)‖
.

We note that en can be an outward or inward unit normal vector, depending on how

we parametrize the surface. In either way, fixing an orientation of en we can define∫
S

F · S :=

∫∫
R

F(S(u, v)) · en(u, v)‖n(u, v)‖dudv

=

∫∫
R

F(S(u, v)) · n(u, v)dudv.

If F is interpreted as a flow, then
∫
S F · S is interpreted as the total (inward or

outward) flux through the surface S.
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