Surface integrals

Math 251

November 14, 2015

1 Parametrized surface

Definition 1.1. A surface in 3-d is a collection of points $(x(u, v), y(u, v), z(u, v))$ where u, v are parameters belonging to a certain domain in the u, v plane.

The simplest example of a parametrized surface is given by a function $f(x, y)$: $\mathbb{R}^{2} \rightarrow \mathbb{R}$. Suppose $(x, y) \in[a, b] \times[c, d]$. Then the collection of points

$$
(x, y, f(x, y)),(x, y) \in[a, b] \times[c, d]
$$

represents a surface in 3 -d and the parameters domain is the rectangle $[a, b] \times[c, d]$.
Example 1.2. The collection of points $\left(x, y, x^{2}+y^{2}\right),(x, y) \in[-1,1] \times[-1,1]$ represents the surface of a paraboloid in 3-d with parameters domain $[-1,1] \times[-1,1]$.

The parameters domain does not have to be rectangular, as the following example makes clear.

Example 1.3. Consider the upper-half unit sphere with center at the origin. One way to represents it is by the collection of points $\left(x, y, \sqrt{1-x^{2}-y^{2}}\right)$ but now the domain of (x, y) is $-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}},-1 \leq x \leq 1$, namely the unit circle on the plane with center at the origin.

There are obviously more than one way to parametrize a surface. One possible criterion to choose the parametrization is such that the parameter domain is rectangular. For example, a better way to parametrize the upper unit sphere would be via the spherical coordinate.

Example 1.4. Consider again the upper-half unit sphere with center at the origin. A better parametrization for this surphace is $(\sin (\phi) \cos (\theta), \sin (\phi) \sin (\theta), \cos (\phi))$ where $0 \leq \phi \leq \pi / 2,0 \leq \theta \leq 2 \pi$.

2 Tangent plane to a surface at a point

Consider a surface $\mathcal{S}:(x(u, v), y(u, v), z(u, v))$ at a point $\left(u_{0}, v_{0}\right)$. If we fix u_{0} and run along v then we get a curve $\left(x\left(u_{0}, v\right), y\left(u_{0}, v\right), z\left(u_{0}, v\right)\right)$. The tangent vector of this curve at v_{0} is

$$
\mathbf{T}_{v}\left(u_{0}, v_{0}\right)=\left\langle x_{v}\left(u_{0}, v_{0}\right), y_{v}\left(u_{0}, v_{0}\right), z_{v}\left(u_{0}, v_{0}\right)\right\rangle
$$

Similarly when we fix v_{0} and rin along u we obtain another curve and a tangent vector

$$
\mathbf{T}_{u}\left(u_{0}, v_{0}\right)=\left\langle x_{u}\left(u_{0}, v_{0}\right), y_{u}\left(u_{0}, v_{0}\right), z_{u}\left(u_{0}, v_{0}\right)\right\rangle
$$

The surface \mathcal{S} is said to be normal at $\left(u_{0}, v_{0}\right)$ if the normal vector

$$
\mathbf{n}\left(u_{0}, v_{0}\right):=\mathbf{T}_{u}\left(u_{0}, v_{0}\right) \times \mathbf{T}_{v}\left(u_{0}, v_{0}\right)
$$

is non-zero.
The tangent plane to the surface \mathcal{S} is the plane through $\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right), z\left(u_{0}, v_{0}\right)\right)$ with normal vector $\mathbf{n}\left(u_{0}, v_{0}\right)$.

Example 2.1. Consider the sphere with radius R and center at the origin with parametrization $(R \sin (\phi) \cos (\theta), R \sin (\phi) \sin (\theta), R \cos (\phi))$ where $0 \leq \phi \leq \pi, 0 \leq \theta \leq$ 2π. We have

$$
\begin{aligned}
\mathbf{T}_{\theta} & =R\langle-\sin (\phi) \sin (\theta), \sin (\phi) \cos (\theta), 0\rangle \\
\mathbf{T}_{\phi} & =R\langle\cos (\phi) \cos (\theta), \cos (\phi) \sin (\theta),-\sin (\phi)\rangle
\end{aligned}
$$

Then the inward normal vector is

$$
\begin{aligned}
\mathbf{n}=\mathbf{T}_{\theta} \times \mathbf{T}_{\phi} & =-R^{2} \sin \phi\langle\sin (\phi) \cos (\theta), \sin (\phi) \sin (\theta), \cos (\phi)\rangle \\
& =-R^{2} \sin (\phi) \mathbf{e}_{r}
\end{aligned}
$$

where again $\mathbf{e}_{r}(x, y, z):=\frac{\langle x, y, z\rangle}{\sqrt{x^{2}+y^{2}+z^{2}}}$. We can easily verify that in spherical coordinate, $e_{r}(R, \theta, \phi)=\langle\sin (\phi) \cos (\theta), \sin (\phi) \sin (\theta), \cos (\phi)\rangle$.

Similarly we have the outward normal vector $\mathbf{n}=\mathbf{T}_{\phi} \times \mathbf{T}_{\theta}=R^{2} \sin (\phi) \mathbf{e}_{r}$.
Remark 2.2. Note that in the above calculation, the normal vector at the point $(0,0,1)$ (or in spherical coordinate $\phi=0$) is $\mathbf{0}$. Of course there is a normal vector to the unit sphere at $(0,0,1)$. However, we could not capture it with our calculation
using spherical coordinate. This is a reflection of a deep fact about the sphere not being equivalent to a flat surface (in this case the flat rectange $0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi$).

To see that this is a fundamental geometric fact and not just a flaw with the spherical coordinate, note that in the rectangular coordinate $\left(x, y, \sqrt{1-x^{2}-y^{2}}\right.$ we cannot define the normal vector at the boundary $z=0$.

3 Scalar surface integral

Let $\mathcal{S}(u, v)$ be a surface. Fix a point $\left(u_{0}, v_{0}\right)$ on \mathcal{S}. From $\left(u_{0}, v_{0}\right)$ we can move a small (signed) distance $d u$ in the u direction along the surface \mathcal{S}. Approximately we will be at the point

$$
\begin{aligned}
\mathcal{S}\left(u_{0}, v_{0}\right)+\mathbf{T}_{u}\left(u_{0}, v_{0}\right) d u= & \left\langle x\left(u_{0}, v_{0}\right)+x_{u}\left(u_{0}, v_{0}\right) d u, y\left(u_{0}, v_{0}\right)+y_{u}\left(u_{0}, v_{0}\right) d u,\right. \\
& \left.z\left(u_{0}, v_{0}\right)+z_{u}\left(u_{0}, v_{0}\right) d u\right\rangle
\end{aligned}
$$

Similarly, if we can a small (signed) distance $d v$ in the v direction along the surface \mathcal{S} and we approximately will be at

$$
\begin{aligned}
\mathcal{S}\left(u_{0}, v_{0}\right)+\mathbf{T}_{v}\left(u_{0}, v_{0}\right) d u= & \left\langle x\left(u_{0}, v_{0}\right)+x_{v}\left(u_{0}, v_{0}\right) d v, y\left(u_{0}, v_{0}\right)+y_{v}\left(u_{0}, v_{0}\right) d v,\right. \\
& \left.z\left(u_{0}, v_{0}\right)+z_{v}\left(u_{0}, v_{0}\right) d v\right\rangle
\end{aligned}
$$

In conclusion, if we move along the rectangle

$$
\left(u_{0}, v_{0}\right) ;\left(u_{0}+d u, v_{0}\right) ;\left(u_{0}, v_{0}+d v\right) ;\left(u_{0}+d u, v_{0}+d v\right)
$$

then along the surface \mathcal{S} we approximately move along the parallelogram

$$
\begin{aligned}
\mathcal{S}\left(u_{0}, v_{0}\right) & ; \mathcal{S}\left(u_{0}, v_{0}\right)+\mathbf{T}_{u}\left(u_{0}, v_{0}\right) d u \\
\mathcal{S}\left(u_{0}, v_{0}\right)+\mathbf{T}_{v}\left(u_{0}, v_{0}\right) d v & ; \mathcal{S}\left(u_{0}, v_{0}\right)+\mathbf{T}_{u}\left(u_{0}, v_{0}\right) d u+\mathbf{T}_{v}\left(u_{0}, v_{0}\right) d v
\end{aligned}
$$

This approximation is exact if \mathcal{S} is a plane in 3 d , for example. The area of this parallelogram is

$$
\begin{aligned}
\left\|\mathbf{T}_{u}\left(u_{0}, v_{0}\right) d u \times \mathbf{T}_{v}\left(u_{0}, v_{0}\right) d v\right\| & =\left\|\mathbf{T}_{u}\left(u_{0}, v_{0}\right) \times \mathbf{T}_{v}\left(u_{0}, v_{0}\right)\right\| d u d v \\
& =\left\|\mathbf{n}\left(u_{0}, v_{0}\right)\right\| d u d v
\end{aligned}
$$

Now suppose $\mathcal{S}(u, v)$ is defined for (u, v) in some region \mathcal{R}. As we go over all (u, v) in a partition of \mathcal{R} and sum up all the areas of the parallelograms at (u, v) then we
obtain approximately the surface area of \mathcal{S}. The approximation gets better as the partition becomes finer. Thus we conclude S, the surface area of \mathcal{S} is equal to

$$
S=\iint_{\mathcal{R}}\|\mathbf{n}(u, v)\| d u d v
$$

For a scalar function $f(u, v)$ defined on \mathcal{R} we can also define

$$
\begin{equation*}
\iint_{\mathcal{R}} f(u, v)\|\mathbf{n}(u, v)\| d u d v \tag{1}
\end{equation*}
$$

If $f(u, v)$ is interpreted as the density (charge, mass) of the surface then the double integral (1) captures the total charge or mass of the surface.

4 Vector surface integral

Similar to vector line integral, we also have vector surface integral. Let \mathcal{F} be a vector field and $\mathcal{S}(u, v),(u, v) \in \mathcal{R}$ be a surface in \mathbb{R}^{3}. The unit vector of \mathcal{S} at a point $\left(u_{0}, v_{0}\right)$ is defined by

$$
\mathbf{e}_{\mathbf{n}}\left(u_{0}, v_{0}\right)=\frac{\mathbf{n}\left(u_{0}, v_{0}\right)}{\left\|\mathbf{n}\left(u_{0}, v_{0}\right)\right\|} .
$$

We note that $\mathbf{e}_{\mathbf{n}}$ can be an outward or inward unit normal vector, depending on how we parametrize the surface. In either way, fixing an orientation of $\mathbf{e}_{\mathbf{n}}$ we can define

$$
\begin{aligned}
\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{S} & :=\iint_{\mathcal{R}} \mathbf{F}(\mathcal{S}(u, v)) \cdot \mathbf{e}_{\mathbf{n}}(u, v)\|\mathbf{n}(u, v)\| d u d v \\
& =\iint_{\mathcal{R}} \mathbf{F}(\mathcal{S}(u, v)) \cdot \mathbf{n}(u, v) d u d v
\end{aligned}
$$

If \mathbf{F} is interpreted as a flow, then $\int_{\mathcal{S}} \mathbf{F} \cdot \mathbf{S}$ is interpreted as the total (inward or outward) flux through the surface \mathcal{S}.

