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1 Parametrized surface

Definition 1.1. A surface in 3-d is a collection of points (x(u,v),y(u,v), z(u,v))

where u,v are parameters belonging to a certain domain in the u,v plane.

The simplest example of a parametrized surface is given by a function f(z,y) :
R? — R. Suppose (z,y) € [a,b] x [c,d]. Then the collection of points

(@, 9, f(z,)), (,y) € [a,b] X [c,d]
represents a surface in 3-d and the parameters domain is the rectangle [a, b] X [c, d].

Example 1.2. The collection of points (z,y, x> +vy?), (z,y) € [-1,1] x [=1,1] repre-

sents the surface of a paraboloid in 3-d with parameters domain [—1,1] x [—1,1].

The parameters domain does not have to be rectangular, as the following example

makes clear.

Example 1.3. Consider the upper-half unit sphere with center at the origin. One
way to represents it is by the collection of points (x,y, m) but now the
domain of (x,y) is —v/1 — 22 <y <1 —22 —1 < 2 < 1, namely the unit circle on
the plane with center at the origin.

There are obviously more than one way to parametrize a surface. One possible
criterion to choose the parametrization is such that the parameter domain is rectan-
gular. For example, a better way to parametrize the upper unit sphere would be via
the spherical coordinate.

Example 1.4. Consider again the upper-half unit sphere with center at the origin. A
better parametrization for this surphace is (sin(¢) cos(0),sin(¢)sin(6), cos(¢)) where
0<¢<m/2,0<6< 2.



2 Tangent plane to a surface at a point

Consider a surface S : (z(u,v), y(u,v), z(u,v)) at a point (ug,vo). If we fix uy and
run along v then we get a curve (z(ug,v),y(ug,v), z(up,v)). The tangent vector of

this curve at v is

T, (ug, vo) = <xv(u0,v0),yv(u0,vo), zv(ug,v0)>.

Similarly when we fix vy and rin along u we obtain another curve and a tangent vector

T, (ug,v9) = <xu(u0,vo),yu(uo,vo), zu(uo,v0)>.
The surface S is said to be normal at (ug, vg) if the normal vector
n(ug, vg) := T (ug, vg) X Ty(ug,vo)

1S non-zero.
The tangent plane to the surface S is the plane through (z(ug, vo), y(uo, vo), 2(ug, vo))

with normal vector n(ug, vo).

Example 2.1. Consider the sphere with radius R and center at the origin with
parametrization (Rsin(¢) cos(#), Rsin(¢)sin(f), Rcos(¢)) where 0 < ¢ < 7,0 < 0 <
2m. We have

Ty = R{—sin(¢)sin(f),sin(¢)cos(d),0)
T, = R{cos(p)cos(h),cos(¢)sin(f), —sin(¢)).

Then the inward normal vector is

n="Tyx Ty = —R*sind(sin(¢)cos(d),sin(¢)sin(f), cos(d))
= —R’sin(¢)e,,

(r02)

er(R,0,0) = (sin(¢) cos(f),sin(¢) sin(f), cos(¢)).

Similarly we have the outward normal vector n = Ty x Ty = R?sin(¢)e,.

where again e.(x,y, z) := We can easily verify that in spherical coordinate,

Remark 2.2. Note that in the above calculation, the normal vector at the point
(0,0,1) (or in spherical coordinate ¢ = 0) is 0. Of course there is a normal vector

to the unit sphere at (0,0,1). However, we could not capture it with our calculation
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using spherical coordinate. This is a reflection of a deep fact about the sphere not being
equivalent to a flat surface (in this case the flat rectange 0 < ¢ < m,0 < 6 < 27).

To see that this is a fundamental geometric fact and not just a flaw with the
spherical coordinate, note that in the rectangular coordinate (x,y, m we
cannot define the normal vector at the boundary z = 0.

3 Scalar surface integral

Let S(u,v) be a surface. Fix a point (ug,v9) on S. From (ug, vg) we can move a small
(signed) distance du in the u direction along the surface S. Approximately we will

be at the point

S(uo; vo) + Tou(ug, vo)du = <~’U(UO>UO) + @y (o, vo)du, y(uo, vo) + Yu(uo, vo)du,

z(ug, vo) + 2y (uo, vo)du>.

Similarly, if we can a small (signed) distance dv in the v direction along the surface

S and we approximately will be at

S(ug, vo) + Ty (g, vo)du = {x(ug, vo) + 4 (uo, vo)dv, y(ug, vo) + Yo (e, vo)dv,

2(ug, vo) + 2y (uo, vo)dv>.
In conclusion, if we move along the rectangle
(w0, vo); (up + du, vo); (ug, vo + dv); (ug + du, vo + dv)
then along the surface S we approximately move along the parallelogram

S(ug,v0) ; S(ug,v) + Ty(uo, vo)du
S(ug,vo) + Ty (ug, vo)dv 5 S(ug,vo) + Tyluog, vo)du + T (ug, vo)dv.

This approximation is exact if § is a plane in 3d, for example. The area of this

parallelogram is

T (uo, vo)du x Ty (ug, vo)dv|| = || Tu(uo, vo) X Ty(uo, vo)|ldudv

= |In(uo, vo)||dudv.

Now suppose S(u, v) is defined for (u, v) in some region R. As we go over all (u,v)

in a partition of R and sum up all the areas of the parallelograms at (u,v) then we
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obtain approximately the surface area of S. The approximation gets better as the

partition becomes finer. Thus we conclude S, the surface area of S is equal to

S = //R n(u, v)||dudv.

For a scalar function f(u,v) defined on R we can also define

//R Fu,0) |0 (u, v)]| dudv. (1)

If f(u,v) is interpreted as the density (charge, mass) of the surface then the double

integral (1) captures the total charge or mass of the surface.

4 Vector surface integral

Similar to vector line integral, we also have vector surface integral. Let F be a vector
field and S(u,v), (u,v) € R be a surface in R3. The unit vector of S at a point (ug, vo)
is defined by

B n(uO,UO>
en(uo, vo) = In(ug, vo)||

We note that e,, can be an outward or inward unit normal vector, depending on how

we parametrize the surface. In either way, fixing an orientation of e, we can define
/F s = // F(S(u,0)) - en(u, v) [0 (u, v) | dudy
S R
= // F(S(u,v)) - n(u,v)dudv.
R

If F is interpreted as a flow, then |, sF - S is interpreted as the total (inward or
outward) flux through the surface S.
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