Conservative vector fields and fundamental theorem of line integral

Math 251

November 14, 2015

1 Conservative vector field

Definition 1.1. Let $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field. We say \mathbf{F} is a conservative vector field if there exists a function $V : \mathbb{R}^3 \to \mathbb{R}$ so that $\mathbf{F} = \nabla V$. That is

$$\mathbf{F}(x, y, z) = \langle V_x, V_y, V_z \rangle.$$

We say V(x, y, z) is a potential function of F.

Remark 1.2. It is easy to see that potential function is only unique up to a constant. Indeed, if $V : \mathbb{R}^3 \to \mathbb{R}$ is given then $\nabla V = \nabla (V+1)$ is a vector field whose candidate potential functions can be any choice of V + c, where c is a constant.

Lemma 1.3. (Necessary criterion for conservative vector field) Let $\mathbf{F} = \langle F_1, F_2, F_3 \rangle$ be a conservative vector field. Then

$$(F_1)_y = (F_2)_x (F_1)_z = (F_3)_x (F_2)_z = (F_3)_y.$$

Example 1.4. Denote $\mathbf{e}_r(x, y, z) = \frac{1}{r} \langle x, y, z \rangle$, where $r = \sqrt{x^2 + y^2 + z^2}$. $\mathbf{e}_r(x, y, z)$ is a unit vector in the direction of $\langle x, y, z \rangle$. We can also think of $\mathbf{e}_r(x, y, z)$ as a vector field that assigns the direction of $\langle x, y, z \rangle$ to the point (x, y, z). Let $\mathbf{F} = \mathbf{e}_r$. Then \mathbf{F} is a conservative vector field.

Proof: It is easy to check that $V = \sqrt{x^2 + y^2 + z^2}$ is a potential function for **F**.

Example 1.5. Let \mathbf{e}_r be the same as the previous example. Let $\mathbf{F} = -\frac{GmM}{r^2}\mathbf{e}_r$. Then \mathbf{F} is a conservative vector field.

Proof: It is easy to check that $V = \frac{-GmM}{\sqrt{x^2+y^2+z^2}}$ is a potential function for **F**.

Interpretation: This result shows that the gravitational force is conservative. **F** is the attraction force of a mass m at the origin acting on a mass M at a point (x, y, z).

The converse of Lemma (1.3) is true, provided that the vector field **F** is defined on a simply connected domain D. A domain is simply connected if for any closed path C in the domain, we can shrink C to a point while remaining in D. In the two dimensional case, a domain with a hole is not simply connected. For example, the unit disk minus the origin is not simply connected.

Example 1.6. Let $\mathbf{F}(x, y) = \langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \rangle$ be a vector field on the domain D that is the unit disk minus the origin. Then $\mathbf{F}(x, y)$ is not conservative in D. We can check that $V = \tan^{-1}(\frac{x}{y})$ satisfies $\nabla V(x, y) = \mathbf{F}(x, y)$ if (x, y) is not the origin. However, if we let C be the unit circle centered at the origin then $\int_C \mathbf{F} \cdot d\mathbf{s} = 2\pi$, not 0. The reason is that V(x, y) is not defined at (0, 0). In polar coordinate, $V = \theta$, the angle of the point (x, y) with respect to the positive x axis. We cannot extend the definition of the angle to the origin (0, 0) in such a way that makes V continuous there. Indeed, V cannot be defined in a continuous way over the whole plane. As we go around one circle on the plane, the angle will increase by 2π while we return to the same point.

2 Fundamental theorem of line integral

Theorem 2.1. Let C be a path from point P to point Q. Let \mathbf{F} be a conservative vector field. Then

$$\int_C \mathbf{F} \cdot d\mathbf{s} = V(Q) - V(P).$$

Proof. Let $\mathbf{r}(t)$ be a parametrization of C such that $\mathbf{r}(0) = P$ and $\mathbf{r}(T) = Q$. Since F is conservative:

$$\int_C \mathbf{F} \cdot d\mathbf{s} = \int_0^T \nabla V(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = V(\mathbf{r}(T)) - V(\mathbf{r}(0)) = V(Q) - V(P).$$

Corollary 2.2. Let C be a closed curve, that is P = Q. If **F** is a conservative vector field then $\int_C \mathbf{F} \cdot d\mathbf{s} = 0$. That is a conservative force does zero work on a closed path.

Corollary 2.3. The path integral of a conservative vector field is independent of the actual path taken. That is let \mathbf{F} be a conservative vector field and C_1, C_2 be two paths from P to Q. Then $\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s} = V(Q) - V(P)$.

Theorem 2.4. Let \mathbf{F} be a vector field that has independent path integral. That is for any C_1, C_2 two paths from P to $Q \int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}$. Then \mathbf{F} is a conservative vector field.

Proof. We prove the case for two dimension $\mathbf{F} = \langle F_1, F_2 \rangle$. Consider the path C_1 from (x, y) to x + h, y. By the independence of path property, $\int_C \mathbf{F} \cdot d\mathbf{s} = V(x + h, y)$ for some function V. On the other hand, $\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_0^h F_1(x, y) dx$. Thus

$$V(x+h,y) = \int_0^h F_1(x+u,y)du.$$

This implies that V is differentiable in the x component and $V_x(x+h, y) = F_1(x+h, y)$. That is $V_x(x, y) = F_1(x, h)$ for any x, y. The proof for the y-component is similar.