Conservative vector fields and fundamental theorem of line integral

Math 251

November 14, 2015

1 Conservative vector field

Definition 1.1. Let $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a vector field. We say \mathbf{F} is a conservative vector field if there exists a function $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ so that $\mathbf{F}=\nabla V$. That is

$$
\mathbf{F}(x, y, z)=\left\langle V_{x}, V_{y}, V_{z}\right\rangle .
$$

We say $V(x, y, z)$ is a potential function of F.
Remark 1.2. It is easy to see that potential function is only unique up to a constant. Indeed, if $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is given then $\nabla V=\nabla(V+1)$ is a vector field whose candidate potential functions can be any choice of $V+c$, where c is a constant.

Lemma 1.3. (Necessary criterion for conservative vector field)
Let $\mathbf{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ be a conservative vector field. Then

$$
\begin{aligned}
& \left(F_{1}\right)_{y}=\left(F_{2}\right)_{x} \\
& \left(F_{1}\right)_{z}=\left(F_{3}\right)_{x} \\
& \left(F_{2}\right)_{z}=\left(F_{3}\right)_{y} .
\end{aligned}
$$

Example 1.4. Denote $\mathbf{e}_{r}(x, y, z)=\frac{1}{r}\langle x, y, z\rangle$, where $r=\sqrt{x^{2}+y^{2}+z^{2}} . \mathbf{e}_{r}(x, y, z)$ is a unit vector in the direction of $\langle x, y, z\rangle$. We can also think of $\mathbf{e}_{r}(x, y, z)$ as a vector field that assigns the direction of $\langle x, y, z\rangle$ to the point (x, y, z). Let $\mathbf{F}=\mathbf{e}_{r}$. Then \mathbf{F} is a conservative vector field.

Proof: It is easy to check that $V=\sqrt{x^{2}+y^{2}+z^{2}}$ is a potential function for \mathbf{F}.

Example 1.5. Let \mathbf{e}_{r} be the same as the previous example. Let $\mathbf{F}=-\frac{G m M}{r^{2}} \mathbf{e}_{r}$. Then \mathbf{F} is a conservative vector field.

Proof: It is easy to check that $V=\frac{-G m M}{\sqrt{x^{2}+y^{2}+z^{2}}}$ is a potential function for \mathbf{F}.
Interpretation: This result shows that the gravitational force is conservative. \mathbf{F} is the attraction force of a mass m at the origin acting on a mass M at a point (x, y, z).

The converse of Lemma (1.3) is true, provided that the vector field \mathbf{F} is defined on a simply connected domain D. A domain is simply connected if for any closed path C in the domain, we can shrink C to a point while remaining in D. In the two dimensional case, a domain with a hole is not simply connected. For example, the unit disk minus the origin is not simply connected.

Example 1.6. Let $\mathbf{F}(x, y)=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$ be a vector field on the domain D that is the unit disk minus the origin. Then $\mathbf{F}(x, y)$ is not conservative in D. We can check that $V=\tan ^{-1}\left(\frac{x}{y}\right)$ satisfies $\nabla V(x, y)=\mathbf{F}(x, y)$ if (x, y) is not the origin. However, if we let C be the unit circle centered at the origin then $\int_{C} \mathbf{F} \cdot d \mathbf{s}=2 \pi$, not 0 . The reason is that $V(x, y)$ is not defined at $(0,0)$. In polar coordinate, $V=\theta$, the angle of the point (x, y) with respect to the positive x axis. We cannot extend the definition of the angle to the origin $(0,0)$ in such a way that makes V continuous there. Indeed, V cannot be defined in a continuous way over the whole plane. As we go around one circle on the plane, the angle will increase by 2π while we return to the same point.

2 Fundamental theorem of line integral

Theorem 2.1. Let C be a path from point P to point Q. Let \mathbf{F} be a conservative vector field. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}=V(Q)-V(P)
$$

Proof. Let $\mathbf{r}(t)$ be a parametrization of C such that $\mathbf{r}(0)=P$ and $\mathbf{r}(T)=Q$. Since F is conservative:

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{T} \nabla V(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=V(\mathbf{r}(T))-V(\mathbf{r}(0))=V(Q)-V(P)
$$

Corollary 2.2. Let C be a closed curve, that is $P=Q$. If \mathbf{F} is a conservative vector field then $\int_{C} \mathbf{F} \cdot d \mathbf{s}=0$. That is a conservative force does zero work on a closed path.

Corollary 2.3. The path integral of a conservative vector field is independent of the actual path taken. That is let \mathbf{F} be a conservative vector field and C_{1}, C_{2} be two paths from P to Q. Then $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{s}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{s}=V(Q)-V(P)$.

Theorem 2.4. Let \mathbf{F} be a vector field that has independent path integral. That is for any C_{1}, C_{2} two paths from P to $Q \int_{C_{1}} \mathbf{F} \cdot d \mathbf{s}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{s}$. Then \mathbf{F} is a conservative vector field.

Proof. We prove the case for two dimension $\mathbf{F}=\left\langle F_{1}, F_{2}\right\rangle$. Consider the path C_{1} from (x, y) to $x+h, y$. By the independence of path property, $\int_{C} \mathbf{F} \cdot d \mathbf{s}=V(x+h, y)$ for some function V. On the other hand, $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{h} F_{1}(x, y) d x$. Thus

$$
V(x+h, y)=\int_{0}^{h} F_{1}(x+u, y) d u
$$

This implies that V is differentiable in the x component and $V_{x}(x+h, y)=F_{1}(x+h, y)$. That is $V_{x}(x, y)=F_{1}(x, h)$ for any x, y. The proof for the y-component is similar.

