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1 Conservative vector field

Definition 1.1. Let F : R3 → R3 be a vector field. We say F is a conservative vector

field if there exists a function V : R3 → R so that F = ∇V . That is

F(x, y, z) = 〈Vx, Vy, Vz〉.

We say V (x, y, z) is a potential function of F .

Remark 1.2. It is easy to see that potential function is only unique up to a constant.

Indeed, if V : R3 → R is given then ∇V = ∇(V + 1) is a vector field whose candidate

potential functions can be any choice of V + c, where c is a constant.

Lemma 1.3. (Necessary criterion for conservative vector field)

Let F =
〈
F1, F2, F3

〉
be a conservative vector field. Then

(F1)y = (F2)x

(F1)z = (F3)x

(F2)z = (F3)y.

Example 1.4. Denote er(x, y, z) = 1
r

〈
x, y, z

〉
, where r =

√
x2 + y2 + z2. er(x, y, z)

is a unit vector in the direction of
〈
x, y, z

〉
. We can also think of er(x, y, z) as a

vector field that assigns the direction of
〈
x, y, z

〉
to the point (x, y, z). Let F = er.

Then F is a conservative vector field.

Proof: It is easy to check that V =
√
x2 + y2 + z2 is a potential function for F.
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Example 1.5. Let er be the same as the previous example. Let F = −GmM
r2

er. Then

F is a conservative vector field.

Proof: It is easy to check that V = −GmM√
x2+y2+z2

is a potential function for F.

Interpretation: This result shows that the gravitational force is conservative. F is

the attraction force of a mass m at the origin acting on a mass M at a point (x, y, z).

The converse of Lemma (1.3) is true, provided that the vector field F is defined

on a simply connected domain D. A domain is simply connected if for any closed

path C in the domain, we can shrink C to a point while remaining in D. In the two

dimensional case, a domain with a hole is not simply connected. For example, the

unit disk minus the origin is not simply connected.

Example 1.6. Let F(x, y) =
〈 −y
x2+y2

, x
x2+y2

〉
be a vector field on the domain D that is

the unit disk minus the origin. Then F(x, y) is not conservative in D. We can check

that V = tan−1(x
y
) satisfies ∇V (x, y) = F(x, y) if (x, y) is not the origin. However,

if we let C be the unit circle centered at the origin then
∫
C

F · ds = 2π, not 0. The

reason is that V (x, y) is not defined at (0, 0). In polar coordinate, V = θ, the angle

of the point (x, y) with respect to the positive x axis. We cannot extend the definition

of the angle to the origin (0, 0) in such a way that makes V continuous there. Indeed,

V cannot be defined in a continuous way over the whole plane. As we go around one

circle on the plane, the angle will increase by 2π while we return to the same point.

2 Fundamental theorem of line integral

Theorem 2.1. Let C be a path from point P to point Q. Let F be a conservative

vector field. Then ∫
C

F · ds = V (Q)− V (P ).

Proof. Let r(t) be a parametrization of C such that r(0) = P and r(T ) = Q. Since

F is conservative:∫
C

F · ds =

∫ T

0

∇V (r(t)) · r′(t)dt = V (r(T ))− V (r(0)) = V (Q)− V (P ).

Corollary 2.2. Let C be a closed curve, that is P = Q. If F is a conservative vector

field then
∫
C

F · ds = 0. That is a conservative force does zero work on a closed path.
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Corollary 2.3. The path integral of a conservative vector field is independent of the

actual path taken. That is let F be a conservative vector field and C1, C2 be two paths

from P to Q. Then
∫
C1

F · ds =
∫
C2

F · ds = V (Q)− V (P ).

Theorem 2.4. Let F be a vector field that has independent path integral. That is for

any C1, C2 two paths from P to Q
∫
C1

F · ds =
∫
C2

F · ds. Then F is a conservative

vector field.

Proof. We prove the case for two dimension F =
〈
F1, F2

〉
. Consider the path C1

from (x, y) to x+h, y. By the independence of path property,
∫
C

F · ds = V (x+h, y)

for some function V . On the other hand,
∫
C1

F · ds =
∫ h

0
F1(x, y)dx. Thus

V (x+ h, y) =

∫ h

0

F1(x+ u, y)du.

This implies that V is differentiable in the x component and Vx(x+h, y) = F1(x+h, y).

That is Vx(x, y) = F1(x, h) for any x, y. The proof for the y-component is similar.
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