Polar, cylindrical and spherical coordinates

Math 251

October 17, 2015

1 Polar coordinates

Consider a point P on the plane with given x, y axis. Denote the origin $(0,0)$ as O. To exactly describe P, we can prescribe its (x, y) coordinates. That is we prescribe how far P is away from O along the x-axis and along the y-axis.

Alternatively, we can prescribe the distance $r=|O P|$ and the angle θ between $O P$ and the positive x-axis. You should verify that this also uniquely describe P with the restriction that $r>0$.

Indeed, we have

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
\theta & =\tan ^{-1}\left(\frac{y}{x}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

That is there is a one to one correspondence between the (x, y) and (R, θ) coordinate system. We refer to (R, θ) as the polar coordinate system.

2 Cylindrical coordinates

Now consider P with given (x, y, z) coordinate. If we transform (x, y) to the corresponding polar coordinate, then we can describe P as (r, θ, z). This is referred to as the cylindrical coordinate system.

3 Spherical coordinates

Again consider P with given (x, y, z) coordinate. Let P^{\prime} be the projection of P on the $x y$-plane. That is $P^{\prime}=(x, y, 0)$. We can alternatively describe P with
a) ρ : the distance $|O P|$
b) θ : the angle between $O P^{\prime}$ and the positive x axis
c) ϕ : the angle between $O P$ and the positive z axis.

The coordinate (ρ, θ, ϕ) and is referred to as the spherical coordinate. We make the restriction that $\rho>0,0 \leq \phi \leq \pi$. The spherical coordinate also uniquely describes P
as followed:

$$
\begin{aligned}
\rho^{2} & =x^{2}+y^{2}+z^{2} \\
\theta & =\tan ^{-1}\left(\frac{y}{x}\right) \\
\phi & =\cos ^{-1}\left(\frac{z}{\rho}\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
x & =\rho \sin \phi \cos \theta \\
y & =\rho \sin \phi \sin \theta \\
z & =\rho \cos \phi .
\end{aligned}
$$

4 Change of variables in polar coordinates

Let \mathcal{R} be the circle with radius 1 around $(0,0)$ and consider the double integral

$$
\begin{equation*}
\iint_{\mathcal{R}} x y^{2} d x d y \tag{1}
\end{equation*}
$$

Because the region is a circle, intuitively it is more convenient to use polar coordinate to integrate. The limit of the double integral is clear: r goes from 0 to $1, \theta$ goes from 0 to 2π. The substitution is also clear: $x \rightarrow r \cos \theta, y \rightarrow r \sin \theta$. What about the
differential $d x d y$? It turns out the correct substition for $d x d y$ is $r d r d \theta$. We will give an explanation for this substitution in the section on general change of variables. For now the intuition can be captured via the following picture: If we approximate

Figure 4.1: The differential of the area in polar coordinate
ΔA as a rectangle with width Δr and length $r \Delta \theta$ (which is the arc length of the arc with angle $\Delta \theta$ and radius r) then $\Delta A \approx(\Delta r)(r \Delta \theta)$.

Thus the integral (1) becomes

$$
\int_{0}^{2 \pi} \int_{0}^{1}(r \cos \theta)(r \sin \theta)^{2} r d r d \theta
$$

In general we have

$$
\iint_{\mathcal{R}} f(x, y) d x d y=\iint_{\mathcal{R}} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

where on the RHS we need to convert the region \mathcal{R} to its appropriate expression in polar coordinate.

5 Change of variables in cylindrical coordinates

Consider the triple integral

$$
\iiint_{\mathcal{R}} f(x, y, z) d x d y d z
$$

Following exactly the same argument as above we have

$$
\iiint_{\mathcal{R}} f(x, y, z) d x d y d z=\iint_{\mathcal{R}^{\prime}}\left(\int_{g_{1}(r, \theta)}^{g_{2}(r, \theta)} f(r \cos \theta, r \sin \theta, z) d z\right) r d r d \theta
$$

where R^{\prime} is a region on the plane and g_{1}, g_{2} are the limits of z in the original region \mathcal{R} expressed in polar coordinate.

6 Change of variables in spherical coordinates

Consider the triple integral

$$
\iiint_{\mathcal{R}} f(x, y, z) d x d y d z
$$

where \mathcal{R} is the unit sphere centered at the origin. Then it is natural to use spherical coordinate here where ρ goes from 0 to $1, \theta$ goes from 0 to 2π and ϕ goes from 0 to π. The substitution of x, y, z in terms of ρ, θ, ϕ is also straight forward. Again the question is how do we substitute $d x d y d z$? The correct substition is $\rho^{2} \sin \phi d \rho d \phi d \theta$. The following picture gives the intuition and we will give a mathematical explanation later on: Thus the original triple integral becomes

Figure 6.1: The differential of the volume in spherical cooridnates
$\iiint_{\mathcal{R}} f(x, y, z) d x d y d z=\iiint_{\mathcal{R}} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta$, where the region \mathcal{R} on the RHS needs to be expressed in appropriate spherical coordinate.

