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1 Optimization under one constraint

1.1 In two dimensions

Let f(z,y) be given. Previously we discussed how to find the max and min of f(z,y)
over the plane and over a region R. There is yet another type of optimization: finding

the extrema of f along a curve. That is we consider

max f(z,y)
()
s.t. g(z,y) =c.

We say f(z,y) is the objective function and g(z,y) = c is the constraint that the
maximization of f is subject to. We seek a necessary condition that describes the
candidates for the optimal points (a,b). Note that g(x,y) = ¢ describes a curve so
it effectively reduces our optimization problem to 1 dimension. That is let r(¢) be a

parametrization corresponding to the curve g(x,y) then the problem becomes
max f(x(t)).
But here we can just differentiate in ¢t and use the first derivative condition:
f'(t) =V [f(x@)-r'(t) = 0. (1)

On the other hand, r(t) is a parametrization corresponding to the curve g(z,y)

means that

g(r(t)) = c.



Thus

9(x(1)) = Vo(x(0) - ¥(1) = 0. @)

Comparing (1) and (2) we see that (since we are in 2 dimensions) V f must be parallel
to Vg at the point ¢y on the curve that satisfies (1) and (2). That is

Vf(a,b) = AVg(a,b) (3)

if (a,b) is the optimal point. A is called the Lagrange multiplier of the optimization
problem.

The equation (3) has a nice geometrical interpretation:

to optimize f along the curve g(x,y) = ¢, we consider various level curves of f.
At the point of intersection of these two curves, if the gradient of f is not orthogonal
to the tangent of the curve g(z,y) we can move along the curve g(x,y) = ¢ to arrive
at a higher level curve of f. Thus we can repeat this process until the gradient of f
is orthogonal to the tangent of g(z,y). This is the point where the maximum may
happen (because we will move out of the curve g(x,y) = ¢ if we follow the gradient
of f at this point).

1.2 In three dimensions

Now consider the function f(x,y, z). We want to optimize f subject to the constraint:

g(r,y,z) = c.



The technique is exactly the same as above. We let r(s,t) be a parametrization of
the surface given by g(x,y,z) = ¢. This reduces f as a function of 2 variables s, t.

Thus the first order condition requires

0 0
—f(a(s.1)) = o f(x(s,1) = 0.

But this becomes
Vi Jxst) = 0 (@)

V- %r(s,t) — 0. (5)

We can verify that since g(r(s,t)) = ¢, g satisfies exactly the equation (4). Thus V f

and Vg must be parallel again. Thus there must exists a A so that

Vf=AVg.

2 Optimization under multiple constraints

Now consider the function f(z,y,z). We want to optimize f subject to two con-
straints:

(231 (I’, Y, Z) = O

gZ(xawa) = (.
Let r(t) be the parametrization of the curve that satisfies

q(r(t) =

g2(r(t)) = ca

Then we require

Cre) = V() =0 (6)

On the other hand
Vg -r'(t) = 0 (7)
Vg -7 (t) = 0. (8)

Assuming Vgy, Vgs are not parallel, then (6) and (7) say that Vf must be in the
plane determined by Vg;, Vgs. That is there must exist A, i so that

Vf=AVg + uVgs.
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