Optimization under constraint

Math 251

October 15, 2015

1 Optimization under one constraint

1.1 In two dimensions

Let $f(x, y)$ be given. Previously we discussed how to find the max and min of $f(x, y)$ over the plane and over a region \mathbb{R}. There is yet another type of optimization: finding the extrema of f along a curve. That is we consider

$$
\begin{aligned}
& \max _{(x, y)} f(x, y) \\
\text { s.t. } & g(x, y)=c .
\end{aligned}
$$

We say $f(x, y)$ is the objective function and $g(x, y)=c$ is the constraint that the maximization of f is subject to. We seek a necessary condition that describes the candidates for the optimal points (a, b). Note that $g(x, y)=c$ describes a curve so it effectively reduces our optimization problem to 1 dimension. That is let $\mathbf{r}(t)$ be a parametrization corresponding to the curve $g(x, y)$ then the problem becomes

$$
\max _{t} f(\mathbf{r}(t)) .
$$

But here we can just differentiate in t and use the first derivative condition:

$$
\begin{equation*}
f^{\prime}(t)=\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=0 \tag{1}
\end{equation*}
$$

On the other hand, $\mathbf{r}(t)$ is a parametrization corresponding to the curve $g(x, y)$ means that

$$
g(\mathbf{r}(t))=c
$$

Thus

$$
\begin{equation*}
\frac{d}{d t} g(\mathbf{r}(t))=\nabla g(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=0 . \tag{2}
\end{equation*}
$$

Comparing (1) and (2) we see that (since we are in 2 dimensions) ∇f must be parallel to ∇g at the point t_{0} on the curve that satisfies (1) and (2). That is

$$
\begin{equation*}
\nabla f(a, b)=\lambda \nabla g(a, b) \tag{3}
\end{equation*}
$$

if (a, b) is the optimal point. λ is called the Lagrange multiplier of the optimization problem.

The equation (3) has a nice geometrical interpretation:

to optimize f along the curve $g(x, y)=c$, we consider various level curves of f. At the point of intersection of these two curves, if the gradient of f is not orthogonal to the tangent of the curve $g(x, y)$ we can move along the curve $g(x, y)=c$ to arrive at a higher level curve of f. Thus we can repeat this process until the gradient of f is orthogonal to the tangent of $g(x, y)$. This is the point where the maximum may happen (because we will move out of the curve $g(x, y)=c$ if we follow the gradient of f at this point).

1.2 In three dimensions

Now consider the function $f(x, y, z)$. We want to optimize f subject to the constraint:

$$
g(x, y, z)=c .
$$

The technique is exactly the same as above. We let $\mathbf{r}(s, t)$ be a parametrization of the surface given by $g(x, y, z)=c$. This reduces f as a function of 2 variables s, t. Thus the first order condition requires

$$
\frac{\partial}{\partial s} f(\mathbf{r}(s, t))=\frac{\partial}{\partial t} f(\mathbf{r}(s, t))=0
$$

But this becomes

$$
\begin{align*}
\nabla f \cdot \frac{\partial}{\partial s} \mathbf{r}(s, t) & =0 \tag{4}\\
\nabla f \cdot \frac{\partial}{\partial t} \mathbf{r}(s, t) & =0 \tag{5}
\end{align*}
$$

We can verify that since $g(\mathbf{r}(s, t))=c, g$ satisfies exactly the equation (4). Thus ∇f and ∇g must be parallel again. Thus there must exists a λ so that

$$
\nabla f=\lambda \nabla g
$$

2 Optimization under multiple constraints

Now consider the function $f(x, y, z)$. We want to optimize f subject to two constraints:

$$
\begin{aligned}
g_{1}(x, y, z) & =c_{1} \\
g_{2}(x, y, z) & =c_{2}
\end{aligned}
$$

Let $\mathbf{r}(t)$ be the parametrization of the curve that satisfies

$$
\begin{aligned}
g_{1}(\mathbf{r}(t)) & =c_{1} \\
g_{2}(\mathbf{r}(t)) & =c_{2}
\end{aligned}
$$

Then we require

$$
\begin{equation*}
\frac{d}{d t} f(\mathbf{r}(t))=\nabla f \cdot \mathbf{r}^{\prime}(t)=0 \tag{6}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
\nabla g_{1} \cdot r^{\prime}(t) & =0 \tag{7}\\
\nabla g_{2} \cdot r^{\prime}(t) & =0 \tag{8}
\end{align*}
$$

Assuming $\nabla g_{1}, \nabla g_{2}$ are not parallel, then (6) and (7) say that ∇f must be in the plane determined by $\nabla g_{1}, \nabla g_{2}$. That is there must exist λ, μ so that

$$
\nabla f=\lambda \nabla g_{1}+\mu \nabla g_{2}
$$

