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1 Optimization under one constraint

1.1 In two dimensions

Let f(x, y) be given. Previously we discussed how to find the max and min of f(x, y)

over the plane and over a region R. There is yet another type of optimization: finding

the extrema of f along a curve. That is we consider

max
(x,y)

f(x, y)

s.t. g(x, y) = c.

We say f(x, y) is the objective function and g(x, y) = c is the constraint that the

maximization of f is subject to. We seek a necessary condition that describes the

candidates for the optimal points (a, b). Note that g(x, y) = c describes a curve so

it effectively reduces our optimization problem to 1 dimension. That is let r(t) be a

parametrization corresponding to the curve g(x, y) then the problem becomes

max
t
f(r(t)).

But here we can just differentiate in t and use the first derivative condition:

f ′(t) = ∇f(r(t)) · r′(t) = 0. (1)

On the other hand, r(t) is a parametrization corresponding to the curve g(x, y)

means that

g(r(t)) = c.
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Thus

d

dt
g(r(t)) = ∇g(r(t)) · r′(t) = 0. (2)

Comparing (1) and (2) we see that (since we are in 2 dimensions) ∇f must be parallel

to ∇g at the point t0 on the curve that satisfies (1) and (2). That is

∇f(a, b) = λ∇g(a, b) (3)

if (a, b) is the optimal point. λ is called the Lagrange multiplier of the optimization

problem.

The equation (3) has a nice geometrical interpretation:

to optimize f along the curve g(x, y) = c, we consider various level curves of f .

At the point of intersection of these two curves, if the gradient of f is not orthogonal

to the tangent of the curve g(x, y) we can move along the curve g(x, y) = c to arrive

at a higher level curve of f . Thus we can repeat this process until the gradient of f

is orthogonal to the tangent of g(x, y). This is the point where the maximum may

happen (because we will move out of the curve g(x, y) = c if we follow the gradient

of f at this point).

1.2 In three dimensions

Now consider the function f(x, y, z). We want to optimize f subject to the constraint:

g(x, y, z) = c.
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The technique is exactly the same as above. We let r(s, t) be a parametrization of

the surface given by g(x, y, z) = c. This reduces f as a function of 2 variables s, t.

Thus the first order condition requires

∂

∂s
f(r(s, t)) =

∂

∂t
f(r(s, t)) = 0.

But this becomes

∇f · ∂
∂s

r(s, t) = 0 (4)

∇f · ∂
∂t

r(s, t) = 0. (5)

We can verify that since g(r(s, t)) = c, g satisfies exactly the equation (4). Thus ∇f
and ∇g must be parallel again. Thus there must exists a λ so that

∇f = λ∇g.

2 Optimization under multiple constraints

Now consider the function f(x, y, z). We want to optimize f subject to two con-

straints:

g1(x, y, z) = c1

g2(x, y, z) = c2.

Let r(t) be the parametrization of the curve that satisfies

g1(r(t)) = c1

g2(r(t)) = c2.

Then we require

d

dt
f(r(t)) = ∇f · r′(t) = 0. (6)

On the other hand

∇g1 · r′(t) = 0 (7)

∇g2 · r′(t) = 0. (8)

Assuming ∇g1,∇g2 are not parallel, then (6) and (7) say that ∇f must be in the

plane determined by ∇g1,∇g2. That is there must exist λ, µ so that

∇f = λ∇g1 + µ∇g2.
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