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1 Overview of Calculus

1.1 What is Calculus?

1.1.1 The continuous and the infinite

One may say Calculus is the study of the continuous and the infinity. That is the

study of the very small, and the very big.

The easiest way to think of the continuous is by a collection of numbers with the

property that between any two numbers x, z, we can always find a distinct number y.

That is given x, z, we can find y such that x < y < z.

The most popular example of continuous objects are space and time. Time is a

one dimensional continuous object and space (the one we physically live in) is a three

dimensional continuous object. We will make precise the meaning of dimension later

in the course.

We also think of space and time as infinite. That is given any point in time (or in

space), we can always add a fixed quantity and get to a point beyond the given one.

In one dimension we say given any number x and a fixed distance L, we can always

find a distinct number y so that x + L < y.

1.1.2 Calculus

It is clearly not very interesting just to have space and time. We do things in space

and time. That is we have objects, say our position x as we are driving on a road, as

a function of time t. Symbolically we write x(t). We can also think of the height z

of where we are on a mountain , as a function of our GPS coordinates on the earth

x, y. Symbolically we write z(x, y).
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In the first example, we can ask how to describe x in that instantaneous moment

at t = t0 when we hit the gas pedal. Certainly x will increase as t increase (if we take

the direction of our motion as positive). But we want to be more precise: how fast is

x increasing? We can measure it by

v(∆t) :=
x(t)− x(t0)

t− t0
,

where ∆t = t − t0. Clearly to measure the instantaneous effect we need ∆t to be

small, as small as possible in fact. That is we want to ask what happens to v(∆t)

as ∆t goes to 0. So here we think of v, the average velocity, as a function of ∆t and

we want to obtain the limiting behavior of v at ∆t = 0. Notice this question makes

sense implicitly because time is continuous. If v is only defined for certain values of

∆t, for example the integers, that is we can only talk about v(0), v(1), v(2) etc. then

there is no point in asking about the limiting behavior of v.

Figure 1.1: Derivative as a limit

Calculus makes precise this notion of limiting behavior (or just limit) by the

Epsilon-Delta definition. We can easily think of an example where we need to make

precise the notion of limiting behavior at infinity. Let x(t) model the population of

bacteria in a test tube as a funtion of time, say x(t) := t+1
t

. We leave the test tube

in the incubation for a long time (long in terms of the life of bacteria). We then ask

approximately what is x(t) after this “long” time. In other words, we ask what is

limt→∞
t+1
t

?

Remark: Continuity and infinity do not have to be mutually exclusive, nor do they

have to be together. The integers are infinite but not continuous, the interval (0, 1)
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is continuous but finite, the list of numbers {1, 2, · · · , 10} is finite and discrete (that

is non-continuous) and finally the half line (0,∞) is both continuous and infinite.

As soon as something is infinite or continuous then it is potentially within the

realm of Calculus study. Thus we study the maxima and minima of a function on a

finite (but continuous) interval (0, T ). We discuss the limit of a sequence, , that is

a function over the integers, x(n) = 1+n2

n
as n → ∞. By looking at the partial sum

s(N) :=
∑N

n=0
1
n

we can look at a series as a sequence and thus discuss the limiting

behavior of a series as we discuss sequences: limN→∞
∑N

n=0
1
n
.

1.2 Calculus 3 versus Calculus 1,2

Calculus 1,2 are usually referred to as single variable calculus and Calculus 3 is usually

referred to as multi-variable Calculus. Thus the difference is clear: Calculus 1 and 2

studies functions of one variable while Calculus 3 studies functions of many variables.

Several remarks are in order. First while it is true that the calculus techniques for

functions of two variables, i.e. z = f(x, y), are almost the same as the techniques for

functions of more than two variables i.e. y = f(x1, x2, · · · , xn), n > 2, we will limit

ourselves to functions of two variables in Calculus 3. One benefit of this restriction

is the ease of demonstration (i.e. drawing graphs and illustrations in 3-d).

Some of the common examples of function of one variable that arise in physics are

functions that depend on time. Thus for a particle we can study its position s(t), its

velocity v(t) and its accelaration a(t). On the other hand, if we have a function of two

variables, one of the most immediately intuitive examples that come to mind is the

height z (of a graph, of a mountain etc.) as a function of the (x, y). coordinates. Thus

3-d geometry is intimately connected to Calculus 3 and Calculus 3 techniques can be

used to understand certain properties of 3 dimensional objects. This suggests that

we start the studying of Calculus 3 with 3-d geometry, beginning with the coordinate

system and vectors.

2 Three-dimensional vectors

2.1 Three dimensional Cartesian coordinate system

You should be very familiar with the Cartesian coordinate system on a plane, where

a point is represented by its horizontal x and vertical y coordinates. For example the

origin O is represented by (0, 0). If we add one more coordinate z to represent the
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height, then we have a complete description of a point in three dimensions, the world

we live in. For example, the origin O is now represented as (0, 0, 0) where the last

coordinate also shows that the height of O is at 0.

Figure 2.1: Three dimensional Cartesian coordinate system

2.2 Vectors in 3-d

Imagine we have two points in 3-d P = (1, 2, 3) and Q = (4, 0, 2). To move from

P to Q we need to move 3 units to the east, 2 units south and 1 unit down. This

information can easily be captured by the triple 〈3,−2,−1〉. Note that we implicitly

take east, north and up as positive directions here. Indeed it is immediate to see

that all movements from one point to another in 3-d can be captured in such way,

and we do not need to explicitly identify P and Q, if we are only interested in the

direction and magnitude of the movement. The mathematical object that capture

such information (direction and magnitude) is a vector.

Definition 2.1. A three-dimensional vector is an ordered list of three real numbers

x = 〈x1, x2, x3〉. The set of all such vectors is denoted by R3. xi will be referred to as

the i-th component of the vector x.

Notation: We will use a bold-faced, lower case letter to denote a generic vector in

this course. For example we say let v be a vector in 3-d. What we mean is there is a

set of real numbers 〈v1, v2, v3〉 that completely describes v, which we do not specify

at the moment. We will use regular, lower case letter, s, t, x, y to denote a scalar,

that is, a real number.

Remark 1: By an ordered list we mean that the vector 〈1, 2, 3〉 is different from

the vector 〈2, 1, 3〉, for example. It is obvious why this is the case.
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Remark 2: If we consider the set of points whose third coordinate is always a

constant, for example (x, y, 1) then clearly these points belong to a plane. Similarly,

if we consider the set of vectors whose third component is always a constant, for

example 〈x, y, 0〉 then we look at the set of movements starting from a point on a

horizontal plane and never leaving that plane (since the vertical movement is 0 in

magnitude). Thus the two-dimensional world is naturally embedded in the 3-d world

and all of the concepts we develop in 3-d can easily be reduced down to 2-d.

Remark 3 - Vector versus point: You may note that the representation of a vector

is very similar to the representation of a point. To distinguish them, we use paren-

theses () for point and 〈〉 for vector. Mathematically, they are also very similar in the

following sense. Given two points PQ we can come up with a vector that points from

P to Q. On the other hand, given a vector v, we can simply think of the starting

point P as the origin (0, 0, 0). Thus the set of vectors v in R3 also corresponds to the

set of points in R3 and vice versa. However, conceptually we mean different things

by these two: a point does not have magnitude and direction, while a vector does.

Figure 2.2: A vector from the origin to P

Remark 4 - Parallel vectors: Suppose that we start at the origin (0,0,0) and follow

a certain vector to arrive at (1,2,3). Also suppose that we start at (1,1,1) and follow

a certain vector to arrive at (2,3,4). These are movements happening at different

locations, but note that in both cases, we move 1 unit east, 2 units north and 3 units

up. Thus as far as direction and magnitude of movements are concerned, these are

the same type of movement. On the other hand, if you draw these two movement

vectors you will see that they are parallel. Thus it is convenient to identify all paralel

vectors as one single vector.By default, we think of this vector as starting at the origin

(0,0,0).
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2.3 Vector magnitude

When we move from (0,0,0) to (1,1,1), by Pythagorean theorem, it is easy to check

that we have moved a distance of
√

3 unit. Equivalently, we say the magnitude of the

vector 〈1, 1, 1〉 is
√

3. Indeed we have the following easy Lemma

Lemma 2.2. The magnitude ‖v‖ of a vector v = 〈v1, v2, v3〉 is

‖v‖ =
√

v21 + v22 + v23.

Proof. Left to the reader.

3 Vector algebra

3.1 Scalar multiplication

Imagine we start at the origin (0,0,0) and follow the vector 〈1, 2, 3〉 to arrive at

(1,2,3). Once there we decide to follow 〈1, 2, 3〉 again. Then we arrive at (2,4,6). But

clearly the whole trip can be viewed as starting at (0,0,0) and follow 2 × 〈1, 2, 3〉.
Alternatively, we can start at (0,0,0) and follow 〈4, 6, 6〉. All of these descriptions

land us on the same final point.

Of course we do not have to follow an integer multiple of a vector. We can follow

3/2, and even by a stretch of imagination
√

2 times the vector 〈1, 2, 3〉. All that we

mean here is we follow the same direction as 〈1, 2, 3〉 but in the magnitude t times

‖〈1, 2, 3〉‖ where t = 3/2,
√

2, · · · . The last thing to mention is if t is negative, we

follow the opposite direction as that of 〈1, 2, 3〉. Thus we have

Definition 3.1. Let t be a real number and v = 〈v1, v2, v3〉 a vector in R3. Then tv

is also a R3 vector such that

tv = 〈tv1, tv2, tv3〉

The following is an immediate result that is left to the reader to prove: for all

t ∈ R and v ∈ R3

‖tv‖ = |t|‖v‖.

3.2 Vector addition

Imagine we start at the origin (0,0,0) and follow the vector 〈1, 2, 3〉 to arrive at (1,2,3).

Once there we decide to follow 〈2,−1,−2〉. Then we arrive at (3,1,1). Clearly the
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whole trip can also be viewed as starting at (0,0,0) and follow the vector 〈3, 1, 1〉,
which can be view as the addition of 〈1, 2, 3〉 and 〈2,−1,−2〉. Thus we have

Definition 3.2. Let x = 〈x1, x2, x3〉 and y = 〈y1, y2, y3〉 be two vectors in R3. Then

x + y is also a vector in R3 such that

x + y = 〈x1 + y1, x2 + y2, x3 + y3〉.

The following Lemma is also immediate and left to the reader to prove

Lemma 3.3. We have for all t ∈ R,u,v,w ∈ R3

u + v = v + u

u + (v + w) = (u + v) + w

t(u + v) = tu + tv.

3.2.1 Parallelogram rule

Our definition states that if we add 〈1, 2, 3〉 and 〈2,−1,−2〉 we get 〈3, 1, 1〉. Drawing

all these three vectors as starting at the origin (0,0,0), how do we get 〈3, 1, 1〉 from

〈1, 2, 3〉 and 〈2,−1,−2〉? The answer is the parallelogram rule, as in the following

picture

Figure 3.1: Parallelogram rule

The interpretation of adding vectors using the parallelogram rule is most suitable

for physical forces, where we think of u and v as two forces acting on the same object,

some point mass, at the origin. Clearly we cannot interpret the net effect of these

forces as sequential movements. The resulting force is u + v.
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3.2.2 Unit vector and standard basis vectors

We have the following basic observation: the magnitude of the vector v
‖v‖ is 1. That

is

‖ v

‖v‖
‖ = 1.

Any vector whose magnitude is 1 is called a unit vector. The above observation

shows us how to obtain, for any vector v, a unit vector pointing in the same direction

as v. Unit vector is useful when all we care about is direction but not the magnitude

of a vector.

In particular, there are three important unit vectors that arise in our study of 3-d

geometry:

i = 〈1, 0, 0〉
j = 〈0, 1, 0〉
k = 〈0, 0, 1〉.

They correspond to the east, north and up directions. We refer to these three vec-

tors as the standard basis vectors in R3. They are standard because of the elementary

property that any vector v can be written as a summation of scalar multiplication of

the standard basis. Indeed:

v = v1i + v2j + v3k.

Terminology: We will refer to “summation of scalar multiplication of a colletion

of vectors” as a linear combination of those vectors.

3.3 Triangle inequality

From Figure 3.1 we can easily see that u,v and u + v form a triangle. We thus have

the following triangle inequality, which is another way to state that the straightline

is the shortest path in between two points:

‖u + v‖ ≤ ‖u‖+ ‖v‖.

We will prove this inequality once we develop the notion of dot product for vectors,

which is closely related to the cosine rule for triangle.
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3.4 Parametric representation of a line

The first application we have for vectors is to represent a line. Traditionally, we think

of a line as defined by two points P0 and P and extend indefinitely on either side of

P0 or P . We say two points uniquely determine a line.

Alternatively, given a point P0 = (x0, y0, v0) and a vector v = 〈v1, v2, v3〉 (pointing

to P perhaps) we can start at P and follow either v or −v to obtain the same line

as above. In other words, a point and a vector also uniquely determine a line. Let’s

denote this line as L.

Any point P on L can be represented by a vector as

−→
OP = 〈x0, y0, v0〉+ t〈v1, v2, v3〉,

where O is the origin and t is a to be dertemined parameter, depending on where P

is. Alternatively, we can just write

P = (x0 + tv1, y0 + tv2, z0 + tv3).

Figure 3.2: Parametric representation of a line

Finally, given two points P,Q, to describe the line that goes through P and Q we

simply let v =
−→
PQ and follow the above formula.
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