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1 Introduction

In this note we discuss the two fundamental theorems of asset pricing for the con-

tinuous time model, in particular the Black-Scholes model. The mathematical tool

for discussion is martingale theory in continuous time. We will define the notion

of martingales in continuous time, and show that under the risk neutral measure,

the discounted underlying asset price is a martingale. By our pricing formula, the

discounted value process of a non-American financial derivative is also a martingale

under the risk neutral measure. This is used to prove the first fundamental theo-

rem of asset pricing. Under the uniqueness of the risk neutral measure, we show the

existence of the hedging portfolio for non-American financial derivatives.

2 Martingale in continuous time

A process Vt is a martingale with respect to the filtration FS
t under a probability

measure P if:

a. Vt ∈ FS
t for all t.

b. For all t ≥ s, E(Vt|FS
s ) = Vs.

Remark:

1. Condition (a) means that for each t, there exists a function f and a countable

subset {t0, t1, t2, · · · } of [0, t] such that

Vt = f(St0 , St1 , · · · ).
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This is consistent with our intuition that the value of the financial derivative

should only depend on the historical price of the underlying asset.

2. Condition b is the martingale condition. The expectation E is taken under

the probability P . This is essential: if we change the measure P , this condition may

not hold. Thus Vt can be that a process is a martingale under some measure but not

under some other measure.

Similarly, Vt is a sub (super)-martingale with respect to the filtration FS
t under a

probability measure P if:

a. Vt ∈ FS
t for all t.

b. For all t ≥ s, E(Vt|FS
s ) ≥ (≤)Vs.

3. Sometimes we just say St is a martingale (under probability P ). Then it is

understood that the filtration is St’s own filtration (FS
t ).

2.1 Some examples

The following are the most important examples we encountered so far:

1. The Brownian motion is a martingale with respect to its own filtration.

2. The discounted stock price e−rtSt is a martingale with respect to FS
t under the

risk neutral measure Q (but not neccessarily under the physical measure P ).

3. The discounted value of a European option e−rtVt is a martingale with respect

to FS
t under the risk neutral measure Q.

4. If X1, X2, · · · , Xn are martingales then
∑

i ciXi is also a martingale, where ci’s

are constants.

3 The first fundamental theorem of asset pricing

3.1 Betting against a martingale in continuous time

Recall the following situation in discrete time: Let 0 = t0 < t1 < ... < tn = T be a

partition of [0, t]. Let ∆tk be the number of shares we hold of S at time tk. Our net

“winning” over the period [tk, tk+1] is ∆tk(Stk+1
− Stk) and our total winning up to a

time ti is

πti =
i−1∑
k=0

∆tk(Stk+1
− Stk).

We proved the following lemma:
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Lemma 3.1. If ∆tk ∈ FS
tk

and Stk is a martingale then πtk is also a martingale with

respect to FS
tk

.

Now suppose each period [tk, tk+1] has length ∆T and we let ∆T → 0. If ti = t

then

i−1∑
k=0

∆tk(Stk+1
− Stk)→

∫ t

0

∆udSu.

It can be shown also that the martingale property of πtk is preserved in the limiting

process. That is we have the following continuous version of the above lemma:

Lemma 3.2. If ∆t ∈ FS
t and St is a martingale then πt is also a martingale with

respect to FS
t .

The basic message is the same: when you bet against a martingale, the total

winning remains a martingale as long as the strategy is non-anticipatory.

3.2 The dynamics of the value of a self-financing portfolio

Recall the following derivation: Let 0 = t0 < t1 < ... < tn = T be a partition of [0, T ].

Consider an investor who invests in an underlying asset S and the saving account

such that the portfolio is self-financing. Let πk = πtk be the value of the portfolio

and ∆k be the number of shares of S he holds at time k. Then

πk+1 = ∆kSk+1 + (1 + r∆T )(πk −∆kSk).

Rearraning terms, we have

πk+1 = πk + ∆k(Sk+1 − Sk) + r∆T (πk −∆kSk)

= πk + ∆k(Sk+1 − Sk) + ykr(tk+1 − tk).

By induction (applying the same derivation on πk, πk−1, · · · ) we have

πk+1 =
k∑

i=1

∆i(Si+1 − Si) + yir(ti+1 − ti).

where yk is the amount of cash we holds at time k. Thus if we consider ∆(t), y(t) as

a function of t, letting ‖∆‖ → 0 we get

πt =

∫ t

0

∆udSu +

∫ t

0

yurdu.
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Now , self-financing requiring that ∆(t) + y(t) = π(t), replacing yu = πu − rSu,

then we have

πt =

∫ t

0

∆u(dSu − rSudu) +

∫ t

0

πurdu,

Equivalently, we can write

dπt = rπtdt+ ∆t(dSt − rStdt).

This is the dynamics of the value of a self-financing portfolio in continuous time.

What we are interested in, however, is the discounted value of the portfolio: e−rtπt.

Then by Ito’s formula

d(e−rtπt) = −re−rtπt + e−rtdπt = e−rt∆t(dSt − rStdt)

But again, similarly we have

d(e−rtSt) = −re−rtSt + e−rtdSt.

Thus

d(e−rtπt) = ∆td(e−rtSt). (1)

This is the dynamics of the discounted value of a self-financing portfolio in con-

tinuous time.

Remark 3.3. Self-financing portfolio as a martingale

From the formula (1), we see that if the discounted stock price e−rtSt is a mar-

tingale, then it follows from Lemma (3.2) that the discounted portfolio value, as long

as it is self-financing, is also a martingale. This result will play an important role in

the fundamental theorems of asset pricing.

3.3 Market with more than 1 assets

The result about self-financing portfolio also holds in market with more than 1 asset

S1, S2, · · · , Sm. The dynamics of a self-financing portfolio with m risky assets and a

money market account just generalizes to

d(e−rtπt) =
m∑
i=1

∆i
td(e−rtSi

t).
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(You can check this from the generalized self-financing condition for m risky assets

in discrete time:

πk+1 =
∑
i

∆i
kS

i
k+1 + er∆T (πk −

∑
i

∆i
kS

i
k).)

It is clear that as long as each discounted asset price e−rtSi
t is a martingale, and

the number of Si shares we hold at time t,∆i
t is non anticipatory: ∆i

t ∈ FS
t for some

t where FS
t = FS1

t ∨ FS2

t ∨ · · · ∨ FSm

t , the smallest filtration containing the filtration

generated by Si then the discounted portfolio value e−rtπt is also a martingale with

respect to FS
t .

3.4 Self-financing portfolio in the Black-Scholes model

Recall that in the Black-Scholes model, under the risk neutral measure Q

dSt = rStdt+ σStdWt.

That is

d(e−rtSt) = σe−rtStdWt.

Or

e−rtSt = S0 +

∫ t

0

σe−ruSudWu.

Again, since Wu is a martingale, by Lemma (3.2), e−rtSt is a martingale. Thus

by Remark (3.3), in the Black-Scholes model, the discounted value of a self-financing

portfolio is a martingale under the risk neutral measure Q.

For market with m risky assets, we can also model each of them as following the

Black-Scholes model with different Brownian motions and different volitility coeffi-

cients:

dSi
t = rSi

tdt+
d∑

j=1

σijSi
tdW

j
t , (2)

where W 1,W 2, · · · ,W d are independent Brownian motions. Note that in this way,

Si, Sj can be correlated.

We are now in the position to discuss the first fundamental theorem of asset pricing

in the continuous time.

5



3.5 The first fundamental theorem of asset pricing

Theorem 3.4. Let a market have m risky assets S1, S2, · · · , Sm. Suppose a risk

neutral measure Q exists, that is

Si
s = EQ(e−r(t−s)Si

t |FS
s ), i = 1, · · · ,m.

Suppose additionally that all derivatives that make payment VT at time T satisfy

Vt = EQ(e−r(T−t)VT |FS
t ),

then there is no self-financing portfolio consisting of Si, V and the money market

account such that π0 = 0 and P (πt ≥ 0) = 1, P (πt > 0) > 0 for 0 ≤ t ≤ T . That is

the market is arbitrage-free.

Proof.

Since e−rtVt is a martingale by the condiion Vt = EQ(e−r(T−t)VT |FS
t ), we can treat

V as a risky asset. It follows from our dicussion about self-financing portfolio that

any self-financing portfolio consisting of Si, V and the money market account must

satisfy e−rtπt is a martingale under the risk neutral measure.

Thus by the martingale condition:

0 = π0 = EQ(e−rtπt).

Now suppose P (πt ≥ 0) = 1 and P (πt > 0) > 0. Then it must follow (from an

elementary result in measure theory) that

EQ(πt) > 0

which leads to EQ(e−rtπt) > 0. Thus we cannot find such portfolio.

3.6 Replicating portfolio as a pricing tool

Theorem (3.4) already states the pricing we must follow for any financial derivative

if we want our market to be arbitrage free, whether or not we can find a replicating

portfolio for the derivatives. We learned in Lecture 2b that we can also price a

financial derivative by the replicating portfolio, if it exists. These two methods should

be consistent, that is they should give the same price. The following Lemma confirms

this is the case.
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Lemma 3.5. Let a market have m risky assets S1, S2, · · · , Sm. If a risk neutral

measure Q exists, that is

Si
t = EQ(e−r∆TSi

T |FS
t ), i = 1, · · · ,m.

Consider a financial derivative V , whose replicating portfolio exists. That is at

any time 0 ≤ t ≤ T , we can find ∆i
t shares of asset Si and yt dollars in cash such

that

πt =
∑
i

∆i
tS

i
t + yt = Vt,

and the portfolio is self-financing:

d(e−rtπt) =
m∑
i=1

∆i
td(e−rtSi

t).

Then Vt = EQ(e−r(T−t)VT |FS
t ),∀t.

Proof. By what we discussed above, e−rtπt is a martingale. Therefore

Vt = πt = EQ(e−r(T−t)πT |FS
t ) = EQ(e−r(T−t)VT |FS

t ).

4 The second fundamental theorem of asset pric-

ing

Theorem 4.1. Let a market have m risky assets S1, S2, · · · , Sm and suppose they

follow the multi-dimensional Black-Scholes model (2). If a risk neutral measure Q

exists, that is

Si
t = EQ(e−r(T−t)Si

T |FS
t ), i = 1, · · · ,m.

and it is unique, then every financial derivative that pays VT at time T can be

replicated and the market is arbitrage-free.

Proof. The replicating condition requires that we are able to find a self-financing

portfolio such that VT (ω) = πT (ω), ∀ω. That is, we need to find ∆i
t, i = 1, 2, · · · ,m

so that

d(e−rtπt) =
m∑
i=1

∆i
td(e−rtSi

t)

πT = VT .
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Observe that since we know the unique risk neutral measure exists, V0 is uniquely

determined:

V0 = EQ(e−rTVT ),

by the first fundamental theorem of asset pricing above.

We will set π0 = V0 (we’re free to determine how to construct π).

Note that

e−rTVT − V0 = e−rTπT − π0 =

∫ T

0

d(e−ruπu) =

∫ T

0

m∑
i=1

∆i
ud(e−ruSi

u).

That is

e−rTVT = V0 +

∫ T

0

d(e−ruπu) = V0 +

∫ T

0

m∑
i=1

∆i
ud(e−ruSi

u)

= EQ(e−rTVT ) +
m∑
i=1

∫ T

0

∆i
ud(e−ruSi

u).

Since Si follows the Black-Scholes model (2),

d(e−ruSi
u) =

d∑
j=1

σijSi
tdW

j
t .

That is

e−rTVT = EQ(e−rTVT ) +
m∑
i=1

d∑
j=1

∫ T

0

∆i
uσ

ijSi
tdW

j
t .

A compact way to write this is to use matrix notation:

e−rTVT = EQ(e−rTVT ) +

∫ T

0

∆
T

t ΣdW t,

where

∆
T

t = [∆1
tS

1
t ,∆

2
tS

2
t , · · · ,∆m

t S
m
t ]

Σij = σij

W
T

t = [W 1
t ,W

2
t , · · · ,Wm

t ].

So now we see that at the core of it, the replicating portfolio question can be

rephrased as whether we can write e−rTVT as an Ito integral. The answer to this
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is positive, as long as VT is measurable with respect to FWT (this is a technical

description to say that VT is a function of the paths of W i
t and the paths can only

be sampled at countably many time points). It is referred to as the Martingale

Representation Theorem.

In our set up, this condition for VT is satisfied because it is a fuction of Si
T , i =

1, · · · ,m and Si
T is measurable with respect to FWT . We will mention the Martingale

Representation Theorem, and describe how we can apply it to solve for our replicating

portfolio.

Theorem 4.2. Let ξ be mesurable with respect to FWT such that it is also a square in-

tegrable random variable. Then there exists Z1
t , Z

2
t , · · · , Zd

t such that Zi
t is measurable

with respect to FW t and

ξ =
d∑

i=1

∫ T

0

Zi
tdW

i
t .

So now applying the theorem, we can find a vector Zt so that

e−rTVT = EQ(e−rTVT ) +

∫ T

0

Z
T

t dW t.

The last thing we need to do is to see how we can solve for ∆t given Z
T

t .

Note that the equation we’re solving for is

∆tΣ = Z
T

t ,

or equivalently

ΣT∆t = Zt.

This is where we need to use the uniqueness of Q. For this we need to describe a

bit more details about Girsanov theorem.

Recall that in the physical measure, the dynamics of the underlying assets is as

followed: for i = 1, · · · ,m

dSi
t = µiSi

tdt+ Si
t

d∑
j=1

σijdW j
t

= rSi
tdt+ Si

t [(µ
i − r)dt+

d∑
j=1

σijdW j
t ].
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Suppose we can find a vector µQ such that

ΣµQ = µ− 1r, (3)

where

(µ− 1r)T = [µ1 − r, µ2 − r, · · · , µm − r].

Then the above dynamics of Si can be written as

dSi
t = rSi

tdt+ Si
t

d∑
j=1

σij[µQ
i dt+ dW j

t ]

= rSi
tdt+ Si

t

d∑
j=1

σijd(WQ)jt ,

where

d(WQ)jt = µQ
i dt+ dW j

t , j = 1, · · · , d

are independent BMs under the measure Q given by Girsanov theorem.

Now note that the hypothesis that we have a unique measure Q is equivalent to

the condition that the equation (3)

ΣµQ = µ− 1r,

have a unique solution.

Recall that we proved the following Lemma in Lecture 4b:

Lemma 4.3. Let A be a m× n matrix. Suppose that there exists a vector b ∈ Rm

such that the equation Ax = b has a unique solution. Then for any vector c ∈ Rn,

the equation ATx = c has a solution.

Using this lemma, we deduce that under the uniqueness hypothesis of Q, the

equation

ΣT∆t = Zt

has a solution. Then our replicating portfolio is

∆i
t =

∆
i

t

Si
t

.
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