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1 Motivation:

Suppose an option seller sells a Euro-style derivative that pays VT = φ(ST ) at time

T . We already learned that he should charge V0 = E(e−rTφ(ST )) for the option at

time 0.

Now the question is what should the option seller should do with V0? He is

obligated to pay out φ(ST ) (For example, φ(ST ) = (ST − K)+ if the derivative is a

Euro Call option) at time T . Certainly he cannot just invest V0 in the bank and hope

that he will have enough money to cover the random amount φ(ST ) that needs to be

paid out at time T . Clearly he needs to invest V0 in a portfolio that is a combination

of the stock S and the money market.

But how much should he hold in stocks? Recall from the binomial tree model, we

learned that to hedge a Euro-style derivative, at any time k the option seller should

hold ∆k := Vk+1−Vk
Sk+1−Sk

shares of stock and put the rest of his money into the money

market. Then at the expiration time n, the value of his portfolio will be exactly equal

to Vn, the amount that needs to be paid out. We will apply this idea in continuous

time as well. This is the idea of Delta hedging.

2 Delta hedging:

The idea: We divide the interval [0, T ] into n subintervals, each with length δ (δ small).

We denote each grid point of these subintervals by tk, 0 = t0 < t1 < ... < tn = T .

We construct a self-financing portfolio that consists of the underlying stock and the

money market as followed: At each time tk, we will hold ∆k := ∂V
∂S

(tk) shares of stock.
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We claim that in this way, the value of the portfolio at time T will approximately be

equal to the value of the derivative VT = φ(ST ).

Reason: By Ito’s formula

Vtk+1
− Vtk ≈

(∂V
∂t

(tk) +
1

2

∂2V

∂S2
(tk)σ

2S2
tk

)
δ +

∂V

∂S
(tk)(Stk+1

− Stk).

Since Vt satisfies the Black-Scholes PDE, we have

∂V

∂t
(tk) +

1

2

∂2V

∂S2
(tk)σ

2S2
tk

= −∂V
∂S

rS(tk) + rV (tk).

Plug this in the above:

Vtk+1
− Vtk ≈

(
− ∂V

∂S
rS(tk) + rV (tk)

)
δ +

∂V

∂S
(tk)(Stk+1

− Stk)

=
(
V (tk)−

∂V

∂S
S(tk)

)
rδ +

∂V

∂S
(tk)(Stk+1

− Stk).

Now suppose at time tk we have a portfolio π that satisfies π(tk) ≈ V (tk). We

purchase ∂V
∂S

(tk) shares of stock, which leaves us with π(tk)− ∂V
∂S
S(tk) to put into the

bank. At time tk+1 the value of our portfolio is (because of self-financing)

π(tk+1) = π(tk) +
(
π(tk)−

∂V

∂S
S(tk)

)
rδ +

∂V

∂S
(tk)(Stk+1

− Stk)

Note that we’re in discrete time so the growth in 1 period of time of the money

market portion is the interest rate times the length of that period, which is δ.

But since π(tk) ≈ V (tk) we have

π(tk+1) ≈ V (tk) +
(
V (tk)−

∂V

∂S
S(tk)

)
rδ +

∂V

∂S
(tk)(Stk+1

− Stk)

≈ V (tk+1).

So the approximation extends to the next period. The quantity ∂V
∂S

, the first partial

derivative of V with respect to S, is thus seen to be very important in hedging, and

it’s called the Delta, in symbol ∆, the first Greek we encounter in this section.

3 Computing ∂V
∂S :

The above derivation is valid for any Euro-style derivative. However, the relevant

question is: how much is exactly ∂V
∂S

? Or how to compute the Delta of a certain

Euro derivative? This is difficult in general and usually one needs to use numerical
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techniques. However, when we specialize to certain cases of VT = φ(ST ), for example

φ(ST ) = SkT for some integer k then explicit computation of the Delta is posssible. In

this section we show how to compute the Delta of the most important derivative we

encounter in this class: the Euro-Call option.

Recall that the Black-Scholes formula gives for a Euro call that pays (ST −K)+

at time T :

V (t, St) = StN(d1(t, St))−Ke−r(T−t)N(d2(t, St)),

d1(t, St) =
(r + 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

d2(t, St) =
(r − 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

It is also easy to see that

∂

∂S
d2(t, St) =

∂

∂S
d1(t, St) =

1

Stσ
√
T − t

.

Therefore,

∂V

∂S
(t) = N(d1(t, St)) + StφZ(d1(t, St))

1

Stσ
√
T − t

−Ke−r(T−t)φZ(d2(t, St))
1

Stσ
√
T − t

.

We claim that

φZ(d1(t, St)) = Ke−r(T−t)φZ(d2(t, St))
1

St
.

To see this, note that d1(t, St) = d2(t, St) + σ
√
T − t. Therefore,

φZ(d1) = φZ
(
d2 + σ

√
T − t

)
=

1√
2π

exp
(
− (d2 + σ

√
T − t)2

2

)
= φZ(d2) exp

(−2d2σ
√
T − t− σ2(T − t)

2

)
.

One can check that

2d2(t, St)σ
√
T − t+ σ2(T − t) = 2

(
r(T − t)− log(K) + log(St)

)
.

Plug this into the above expression, the claim is checked. Thus we see a surpris-

ingly simple result: ∂V
∂S

(t) = N(d1(t, St)).
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4 Predicting the future price of Euro Call option

- Theta, Delta and Gamma

So we see that the partial derivative of V with respect to S plays an important role

in hedging. Indeed the Greeks are just various partial derivatives of V with respect

to different parameters in the Black-Scholes model: t, r, σ, T, S. Some of them show

up more ofen than others. In particular, two more Greeks that are important for our

purpose are the ones that appear in Ito’s formula:

Θ(t) :=
∂V

∂t
(t)

Γ(t) :=
∂2V

∂S2
(t),

and of course previously we have

∆(t) :=
∂V

∂S
(t).

Note that in this way the Greeks are random processes. They are functions of t

and St. Their use is to measure the sensitivity of the option price with respect to

the change of other parameters in the model. Again in general it may be difficult

to compute the Θ,Γ of a general derivative. But if we specialize to certain form of

φ(ST ) then the computation can be doable. In particular, for the Euro-Call option:

Γ(t) =
1

σSt
√

2π(T − t)
e−

d21(t,St)

2

Θ(t) = −re−r(T−t)KN(d2(t, St))−
1

2
σ2S2

t Γ(t).

The formulas are complicated, but they are explicit and one can compute these

quantities provided St, σ, r, T are given. Also at time t, using Black-Scholes formula

we also know Vt. Therefore, Ito’s formula gives for a small change in time t+ δ

Vt+δ ≈ Vt +
(
Θ(t) +

1

2
Γ(t)σ2S2(t)

)
δ + ∆(t)(St+δ − St).

Note: The book used Vnew for Vt+δ and only consider the case t = 0. So their

formula is simpler than ours and our formula is slightly more general.
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5 Comparing option price - Vega and Rho

5.1 Vega - ν(t, St)

We’re interested in the following question: Suppose

dSit = µiSit+ σSitdWt,

Si0 = S0,

under the physical measure P . That is the two stocks have different average return

and same volitility, with the same initial price. Let V i
t be the price of Euro Call option

with expiration T and strike K on Si. Suppose that µ1 > µ2. Can we conclude that

V 1
t > V 2

t ?

This is actually a trick question. The answer is NO, V 1
t = V 2

t . The reason is

we need to price these options under the risk neutral measure. And under the risk

neutral measure, the dynamics of Si are

dSit = rSit+ σSitdWt,

Si0 = S0.

That is they have the SAME dynamics with the same initial condition. So the

corresonding call options on them have the same price.

A more interesting question would be what if they have different volitility? Sup-

pose that

dSit = rSit+ σiSitdWt,

Si0 = S0,

where σ1 > σ2 under Q. What can we say about V 1
t versus V 2

t ? Note that appealing

to the Black-Scholes formula is not straightforward because

V (t, St) = StN(d1(t, St))−Ke−r(T−t)N(d2(t, St)),

d1(t, St) =
(r + 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

d2(t, St) =
(r − 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

,

and we have the presence of σ at BOTH the numerator and the denominator of the

fractions in d1, d2. So one can’t say straightfowardly that if si increases then V (t, St)

increases.
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The way to answer this question is to differentiate V (t, St) with respect to σ

and look at the sign of the derivative. Doing this is equivalent to find the Greek

ν(t, St) = ∂
∂σ
V (t, St) of the Euro Call option. The computation is as followed: note

that

∂

∂σ
d1(t, St) =

−r + log(K
St

)

σ2
√
T − t

+
1

2

√
T − t

∂

∂σ
d2(t, St) =

−r + log(K
St

)

σ2
√
T − t

− 1

2

√
T − t.

Therefore

ν(t, St) = StφZ(d1(t, St))

[
−r + log(K

St
)

σ2
√
T − t

+
1

2

√
T − t

]

− Ke−r(T−t)φZ(d2(t, St))

[
−r + log(K

St
)

σ2
√
T − t

− 1

2

√
T − t

]
.

This, coupled with the fact discusses above that

φZ(d1(t, St)) = Ke−r(T−t)φZ(d2(t, St))
1

St

gives a rather simple formula for ν:

ν(t, St) = StφZ(d1(t, St))
√
T − t.

We can now answer our original question. If σ1 > σ2 then V 1
t > V 2

T , since

ν(t, St) ≥ 0.

Remark: The above result can also be justified with the following intuitive argu-

ment: since a call option is like an insurance, and since the larger the volitility, the

riskier the stock is, the call option on the stock with the higher volitility should have

a higher price. Note that this argument also applies to the put option. So we predict

that the put option on the stock with the higher volitility should have a higher price.

We do NOT have to compute the vega of the Put option to justify this. It simply

follows from the Put-Call parity: V c
t − V

p
t = St −K. Thus if V c

t increases, V p
t also

have to increase.
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5.2 Rho - ρ(t, St)

We consider the following situation

dSit = riSit+ σSitdWt,

Si0 = S0,

and V i
t corresponding price of Euro Call option on Si with strike K and expiration

T . This can be interpreted as evaluating the price of the call option on the same stock

in different periods of the economy that has different interest rate. Can we compare

V 1 and V 2, say if r1 > r2?

From the discussion in the previous section, you see that we need to compute

ρ(t, St) = ∂
∂r
V (t, St). You can verify that

ρ(t, St) = K(T − t)e−r(T−t)N(d2(t, St)).

Thus, since ρ(t, St) ≥ 0, we also have V 1
t > V 2

t .
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