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1 Introduction

Consider the price Vt at time of a European call with strike K and expiration T :

Vt = EQ(e−r(T−t)(ST −K)+|Ft).

From either the Markov property of St or the Indendence Lemma, we see that

there is a function v(t, x) (deterministic!) such that for all t,

Vt = v(t, St).

The question is can we derive an equation for v(t, x)? The answer is yes, and the

equation is a Partial Differential Equation (PDE): an equation connecting the partial

derivatives of v in t and x, hence the name.

This equation is of interest because if we can solve it, then to decide Vt we only

need to plug in St for x. Of course we can decide Vt by taking Expectation via the

Independence Lemma, which leads to the Black-Scholes formula. Numerically, this

would lead to the pricing by simulation method: we simulate the paths of St and

summing over the paths as way to approximate the expectation. The pricing of Vt by

by figuring out v(t, x) would like to the numerical solution of PDE approach. This

provides us with an alternative (and sometimes possibly more powerful) approach to

the simulation method described above.

2 Two approaches to derive the Black-Scholes PDE

There are two approaches to derive the Black-Scholes PDE, by constructing either

the replicating or the game theory portfolio. We describe both approaches here. The
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common key to both approaches is the dynamics of a self-financing portfolio: Let

πt be the value of a self financing portfolio consisting of n assets: S1, S2, · · · , Sn.

(They can be anthing from the underlying assets, the saving account to the financial

derivative based on the underlyings). Let ∆i
t, i = 1, · · · , n be the number of shares of

Si in the portfolio at time i. Then

dπt = ∆1
tdS

1
t + ∆2

tdS
2
t + · · ·+ ∆n

t dS
n
t .

The intuition is since the portfolio is self-financing, the only change in the portfolio

value (from one period to another) is from the change in the asset price. You can

make this more rigorous by writing from the period [ti, ti+1]:

πti = ∆1
ti
S1
ti

+ ∆2
ti
dS2

ti
+ · · ·+ ∆n

ti
dSnti

πti+1
= ∆1

ti
S1
ti+1

+ ∆2
ti
dS2

ti+1
+ · · ·+ ∆n

ti
dSnti+1

.

Subtracting the two equations, letting ti → ti+1 we have the dynamics of πt as

described.

3 The game theory approach

3.1 The idea

Recall the game theory portfolio is a portfolio consisting of the underlying S and the

derivative V such πT is a constant in ω. By the no arbitrage condition this forces

erTπ0 = πT .

This argument can be repeat in a small time interval [t, t + h] to the conclusion

that

erhπt = πt+h

Using Taylor’s approximation erh ≈ 1 + rh we have

rπth ≈ πt+h − πt.

Letting h goes to 0, we get

dπt = rπtdt.
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Thus the first key is that if the portfolio is a game theory portfolio, it has

to satisfy

dπt = rπtdt.

This is not surprising actually, since it says if a portfolio has deterministic growth,

then the growth rate has to be the interest.

The next key is to use the self-financing condition: suppose we hold ∆t shares of

the underlying S and 1 share of V for our game theory portfolio then

dπt = ∆tdSt + dVt.

Equating these two equations give

∆tdSt + dVt = r(∆tSt + Vt)dt,

since πt = ∆tSt + Vt. The term dVt can be expanded by a Taylor expansion to terms

involving the partials of the function v(t, x) (recall that Vt = v(t, St)) with respect to

t and x (by applying the Ito’s formula). This will lead to a PDE for v(t, x).

3.2 Game theory portfolio in continuous time

The above approach did not address a subtle but crucial point: how can we build a

game theory portfolio in continuous time? I.e, how can we choose ∆t? The answer is

not simple. In the 1 period model, we could build a portfolio because by the nature

of the model, the stock price only changes at time T and it only has 2 outcomes. In

the continuous time, the stock price changes on the interval [0, T ] and it takes on a

continuum of values. So solving for the number of shares ∆t of the underlying St at

every time t cannot be done directly. Instead, we introduce the following idea.

Let St be a financial asset in continuous time with the following dynamics:

dSt = µtdt+ σtdWt.

We introduce the following terminology: we call St a risky asset if σt 6= 0 and we

call it a risk-free asset if sit = 0,∀t. That is a risk free asset must have its dynamics

as:

dSt = µtdt.
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Note that a risk-free asset does NOT have to be deterministic. The only require-

ment is its Brownian motion component is 0. In this way, the bond (or a saving

account with variable (in time) and random interest rate) is a risk-free asset.

Back to our game theory portfolio, by applying Ito’s formula to find dVt =

dv(t, St), we see that dπt consists of a dt and a dWt term. That is, πt is an Ito

process. For simplicity let us write

dπt = µπt dt+ σπt dWt,

where µπt , σ
π
t are some stochastic processes. Observe that by choosing ∆t carefully,

we can control σπt or µπt (for example, possibly making σπt to be 0). If we can do this,

then we can turn πt into a risk-free asset.

Why is this important? It is because the ONLY risk-free asset in an arbitrage-free

market is the bond, or the saving account. More precisely, we have the following

result:

Lemma 3.1. Let St be a risk-free asset. That is suppose

dSt = µtdt.

In addition, suppose µt is continuous in t. If the market is arbitrage free, then

µt = rSt,∀t.

Proof. Suppose not, then WLOG we assume µs > rSs for some s. Since µs is

continuous, we can find t > s such that µu > rSu, u ∈ [s, t]. Then

St = Ss +

∫ t

s

µudu > Ss +

∫ t

s

rSudu.

That is

St > Sse
r(t−s).

Then it is clear that by borrowing money from the bank to invest in S at time s, we

will have an arbitrage opportunity.

To conclude, to build a game-theory portfolio in continuous time is equivalent to

build a risk-free portfolio. This will be our approach in deriving the Black-Scholes

PDE.
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3.3 Derivation of the Black-Scholes PDE

3.3.1 Goal:

To show that under the model

dSt = rStdt+ σStdBt,

the price v(t, St) of a European-style derivative that pays φ(St) at time T satisfies

∂

∂t
v(t, x) +

∂

∂x
v(t, x)rx+

1

2

∂2

∂x2
v(t, x)σ2x2 − rv = 0

v(t, x) = φ(x).

3.3.2 Ingredients

1. Ito’s formula

2. Game-theory portfolio: We hold ∆t shares of stock at time t and 1 share of V .

We choose ∆t such that the return of the portfolio is “deterministic”.

3. No arbitrage principle: If a portfolio πt satisfies

dπt = µ(t)πtdt, (1)

then we must have µ(t) = r, for all t.

3.3.3 Derivation of Black-Scholes PDE

1. Apply Ito’s formula:

dVt =
∂

∂t
v(t, St) +

∂

∂x
v(t, St)dSt +

1

2

∂2

∂x2
v(t, St)σ

2S2
t dt.

Since

dSt = rStdt+ σStdWt,

grouping the dt and dBt terms together we have

dVt =
[ ∂
∂t
v(t, St) +

∂

∂x
v(t, St)rSt +

1

2

∂2

∂x2
V (t, St)σ

2S2
t

]
dt+

[ ∂
∂x
v(t, St)σSt

]
dWt. (2)

2.
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a. By definition: πt = ∆tSt + Vt. By self-financing requirement:

dπt = ∆tdSt + dVt

= ∆t

(
rStdt+ σStdWt

)
+ dVt.

Replace dVt by (2) and group dt, dWt terms again we have

dπt =
[
∆trSt +

∂

∂t
v(t, St) +

∂

∂x
v(t, St)rSt +

1

2

∂2

∂x2
V (t, St)σ

2S2
t

]
dt

+
[
∆tσSt +

∂

∂x
v(t, St)σSt

]
dWt.

b. Since πt is a game theory portfolio, it has the dynamics

dπt = rπtdt.

Comparing with the above equation, this forces the dWt term to be 0 or

∆t = − ∂

∂x
v(t, St).

Then

dπt =
[ ∂
∂t
v(t, St) +

1

2

∂2

∂x2
v(t, St)σ

2S2
t

]
dt

=

[
∂
∂t
v(t, St) + 1

2
∂2

∂x2
v(t, St)σ

2S2
t

]
πt

πtdt.

This is in the form of (1) with

µ(t) =

[
∂
∂t
v(t, St) + 1

2
∂2

∂x2
v(t, St)σ

2S2
t

]
πt

.

Therefore, we conclude that[
∂
∂t
v(t, St) + 1

2
∂2

∂x2
v(t, St)σ

2S2
t

]
πt

= r.

But πt = ∆tSt + v(t, St) = − ∂
∂x
v(t, St)St + v(t, St). So we have

∂

∂t
v(t, St) +

1

2

∂2

∂x2
v(t, St)σ

2S2
t = r(− ∂

∂x
v(t, St)St + v(t, St)).

In other words

∂

∂t
v(t, St) +

1

2

∂2

∂x2
v(t, St)σ

2S2
t + r

∂

∂x
v(t, St)St − rv(t, St) = 0.

Lastly, since this is true for any value of St, replacing St by x we have

∂

∂t
v(t, x) +

1

2

∂2

∂x2
v(t, x)σ2x2 + r

∂

∂x
v(t, x)x− rv(t, x) = 0.

This is the Black-Scholes PDE.
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4 The replicating portfolio approach

4.1 The idea

Recall the replicating portfolio is a portfolio consisting of the underlying S and the

saving account y such πt = Vt for any time t. But this forces the dynamics of πt and

Vt to be the same:

dVt = dπt.

If we hold ∆t in S and yt in the saving account at time t then (recalling that

dyt = rytdt)

dVt = dπt = ∆tdSt + rytdt.

The dVt term can be expanded by Ito’s formula as before. The key now is the

above equation will become

(something1) dt+ (something2) dWt = 0.

The second key is we have the freedom to choose ∆t to make the dWt term to be

0. This forces the dt term to be 0 as well, from which we can derive the PDE. The

details are as followed.

4.2 The derivation

1. Apply Ito’s formula:

dVt =
∂

∂t
v(t, St) +

∂

∂x
v(t, St)dSt +

1

2

∂2

∂x2
v(t, St)σ

2S2
t dt

= [
∂

∂t
v + rSt

∂

∂x
v +

1

2

∂2

∂x2
vσ2S2

t ]dt+
∂

∂x
vσStdWt.

2. Since

dSt = rStdt+ σStdWt,

we have

dπt = ∆t(rStdt+ σStdWt) + rytdt

= ∆t(rStdt+ σStdWt) + r(πt −∆tSt)dt.

7



Since Vt = πt, we conclude dVt = dSt and

[
∂

∂t
v + rSt

∂

∂x
v +

1

2

∂2

∂x2
vσ2S2

t ]dt+
∂

∂x
vσStdWt = ∆t(rStdt+ σStdWt) + r(πt −∆tSt)dt

= ∆t(rStdt+ σStdWt) + r(Vt −∆tSt)dt

= rvdt+ ∆tσStdWt.

The above equation becomes:

[
∂

∂t
v + rSt

∂

∂x
v +

1

2

∂2

∂x2
vσ2S2

t − rv]dt+ (
∂

∂x
v −∆t)σStdWt = 0.

Choosing ∆t = ∂
∂x
v(t, St) the dWt term is 0. (Note how this term is exactly the

negative of the choice for ∆t in the game theory portfolio. This is related to the Delta

hedging concept). Then the dt term has to be 0 as well, leaving us with

∂

∂t
v + rSt

∂

∂x
v +

1

2

∂2

∂x2
vσ2S2

t − rv = 0.

This is exactly the same Black-Scholes equation we derived before.

5 Some remarks on Delta hedging

As we see from the derivation, in the game theory portfolio, we have to use ∆t =

− ∂
∂x
v(t, St) and in the replicating portfolio, we have to use ∆t = ∂

∂x
v(t, St). This is

an example of one of the Greeks in Math Finance, which we’ll cover later.

The partial derivative of a financial derivative price (or a portfolio price) with

respect to the underlying asset price is referred to as the Delta of the financial deriva-

tive at time t. It measures the sensitivity of the derivative price with respect to the

underlying asset. (Since there are 2 “Deltas” floating around, I will use the Greek

symbol ∆t for the number of assets in the portfolio, and the English word Delta for

the concept of partial derivative with respect to the underlying price).

We have seen that it may be desirable for a portfolio to have “stable” return over

time (as in the game-theory portfolio). The intuitive idea is to make the Delta of our

portfolio to be 0 at all time, so that the portfolio is protected against small change

in the underlying asset price in the short run. In particular if we hold ∆t share of St

and 1 share of the financial derivative in our portfolio, then

πt = ∆tSt + v(t, St).
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Thus (assuming ∆t is constant)

∂

∂St
πt = ∆t

∂

∂St
St +

∂

∂St
v(t, St)

= ∆t +
∂

∂St
v(t, St).

It follows that the choice ∆t = − ∂
∂x
v(t, St) will make ∂

∂St
πt = 0. This choice of ∆t

is referred to as Delta hedging: it makes the Delta of the portfolio value to be 0 in

the short run.

Note that the above derivation is NOT rigorous: we assume ∆t to be constant

(or at least independent of St) to pass the partial derivative w.r.t St through it, only

to conclude that it equals − ∂
∂x
v(t, St) hence depends on St. But the calculation can

be heuristically justified as in the short run, ∆t can be thought of as approximately

constant, and all of the above derivation should be looked at only in the approximate

sense.

Thus, in practice, at any time moment t one can choose the number of shares

∆t so that the Delta of the portfolio is approximately 0 for a short time. But then

the approximation will no longer be valid after a while (maybe a minute, half an

hour etc, say at time t + ε). Then one will need to rebalance the portfolio at that

moment to keep the Delta approximately 0 again. One cannot hope to choose ∆ for

all time t (the buy and hold strategy) while also keep the Delta of the portfolio to be

approximately 0 at all time.

6 An example

6.1 Goal:

To show that the price for a cash or nothing derivative: VT = 1{ST≥K} at time t,

which is

v(t, St) = e−r(T−t)N(d2(t, St)),

d2(t, St) =
(r − 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

satisfies the Black-Scholes PDE:

∂

∂t
V +

∂

∂x
V rx+

∂2

∂x2
V σ2x2 − rV = 0

v(t, x) = 1{x≥K}.
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6.2 Check the terminal condition:

We want to show that

v(t, x) = 1 if x ≥ K

= 0 if x < K.

Indeed if x > K then K
x
< 1 and log(K

x
) < 0. Therefore d2(T, x) = ∞ and

N(d2(T, x)) = 1.

Similarly x ≤ K then K
x
≥ 1 and log(K

x
) ≥ 0. Therefore d2(T, x) = −∞ and

N(d2(T, x)) = 0.

6.3 Calculations:

1. Derivatives of d2(t, x):

∂

∂t
d2(t, x) = −

r − 1
2
σ2

2σ
√
T − t

+
log( x

K
)

2σ
√
T − t3

=
1

2(T − t)
[
d2 −

2

σ
(r − 1

2
σ2)
√
T − t

]
∂

∂x
d2(t, x) =

1

xσ
√
T − t

∂2

∂x2
d2(t, x) = − 1

x2σ
√
T − t

.

2. Derivatives of V :

∂

∂t
V = re−r(T−t)N(d2(t, x)) + e−r(T−t)φz(d2(t, x))

∂

∂t
d2(t, x)

= rV + e−r(T−t)φz(d2(t, x))
∂

∂t
d2(t, x)

∂

∂x
V = e−r(T−t)φz(d2(t, x))

∂

∂x
d2(t, x)

∂2

∂x2
V = −e−r(T−t)d2(t, x)φz(d2(t, x))(

∂

∂x
d2(t, x))2 + e−r(T−t)φz(d2(t, x))

∂2

∂x2
d2(t, x).

3. Check the cancellations:

a.

∂

∂t
V − rV = e−r(T−t)φz(d2)

1

2(T − t)

[
d2 −

2

σ
(r − 1

2
σ2)
√
T − t

]
= e−r(T−t)φz(d2)

1

2(T − t)
d2 − e−r(T−t)φz(d2)

1

σ
√
T − t

(r − 1

2
σ2).
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b.

∂

∂x
V rx =

re−r(T−t)φz(d2)

σ
√
T − t

1

2

∂2

∂x2
V σ2x2 =

1

2

[
− e−r(t−t)φz(d2)d2

T − t
− e−r(T−t)φz(d2)σ√

T − t
]
.

It is easy to see that everything cancels out now.
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