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1 Geometric Brownian motion

1.1 Definition

As motivated in Lecture notes 5a, a natural model for us to use for the underlying

process St, as the limit of the multiperiod binomial model is

dSt = µStdt+ σStdWt,

where µ, σ are constants, Wt is a BM. We’ll use the convention that σ > 0 (even

though St would have the same distribution if σ < 0).

Definition 1.1. A process St following the dynamics

dSt = µStdt+ σStdWt

is referred to as a Geometric BM.

The word geometric comes from the intuition that each increment in St is a product

of St with another increment:

dSt = St(µdt+ σdWt).

1.2 Explicit formula

Now we derive an explicit formula for St a Geometric BM. Formally dividing both

sides of (1) by St we have

dSt
St

= µdt+ σdWt.
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Note that the RHS is free of St. Therefore, if we can write the LHS as df(St) then

we’ll be almost done, since then

f(St)− f(S0) =

∫ t

0

df(Su)du =

∫ t

0

µdu+

∫ t

0

σdWu,

and we can solve for St by taking the inverse of f , if possible.

Recalling from classical calculus, the function with a derivative of the form 1/x is

log(x). Thus we can try applying Ito’s formula to log(St). We have

d log(St) =
1

St
dSt −

1

2S2
t

σ2S2
t dt

= µdt+ σdWt −
1

2
σ2dt.

Therefore,

log(St)− log(S0) =

∫ t

0

(µ− 1

2
σ2)du+

∫ t

0

σdWu

= (µ− 1

2
σ2)t+ σWt.

Therefore,

St = S0e
(µ− 1

2
σ2)t+σWt .

Excerise: Verify that

St = S0e
(µ− 1

2
σ2)t+σWt

satisfies

dSt = µStdt+ σStdWt.

2 Risk neutral measure

2.1 Definition

So far, the dynamics of St we gave were under the physical measure P . That is

properly we should write

dSt = µStdt+ σStdWt,
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under P and

St = S0e
(µ− 1

2
σ2)t+σWt

under P .

How would we define the risk neutral measure in continuous time? Recalling the

intutions that

a. The risk neutral measure must be equivalent to the physical measure P .

b. The risk neutral measure should satisfy

Vt = EQ(e−r(T−t)VT |FSt ),

for any financial derivative that pays VT at time t.

c. The risk neutral price at time t for a financial product that pays ST at time T

(a forward contract on S with zero strike) is St.

Thus we see that the proper definition of a risk neutral measure Q is a measure

that is equivalent to P such that for any t ≤ T

EQ(e−r(T−t)ST |St) = St.

2.2 Conditional expectation for Geometric BM

It is clear that to check whether or not a measure Q is risk neutral, we need to perform

a conditional expectation computation of the type

EQ(f(ST )|St),

for some function f .

It is reasonable to believe that under the risk neutral measure, St is still a geo-

metric Brownian motion, with possibly different µ, σ,Wt. That is it has the following

dynamics under Q:

dSt = µQStdt+ σQStdW
Q
t ,

where µQ, σQ are constants and WQ
t a Q-Brownian motion. For our computational

purpose, we might as well just perform the expectation under P to have an idea of

what we’re getting.

Since we’re conditioning on St, we want to rewrite ST in terms of St, that is

E
{
f(ST )

∣∣∣St} = E
{
f
(
Ste

(µ− 1
2
σ2)(T−t)+σ(WT−Wt)

)∣∣∣St}.
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Note that we have a very familiar situation as what we dealt with in the discrete

time: WT −Wt is independent of St. (To see this, note that St is a function of Wt

by its explicit formula. The independence follows from the independent increment of

BM). Therefore, we can apply the Independence Lemma, in the following form:

Theorem 2.1. Independence Lemma Let X be a RV independent of St. Then

E
{
f(X,St)|St

}
= E

{
f(X, x)

}
|x=St .

Thus by the Independence Lemma, we see that

E
{
f(ST )|St

}
= E

{
f
(
xe(µ− 1

2
σ2)(T−t)+σ(WT−Wt)

)}
|x=St .

The expectation is taken over the random variableWT−Wt, which has Normal(0,T-

t) distribution. In particular, we have

E(ST |St) = E
{
xe(µ− 1

2
σ2)(T−t)+σ(WT−Wt)

}
|x=St = xeµ(T−t)|x=St = Ste

µ(T−t),

where we have used the fact that if X has Normal(0, σ2) distribution

E(eX) = e
1
2
σ2

.

2.3 The dynamics of St under the risk neutral measure

From the previous section, we see that if under Q St has the following dynamics :

dSt = µQStdt+ σQStdW
Q
t ,

then

EQ(e−r(T−t)ST |St) = Ste
(µQ−r)(T−t).

Thus if µQ = r under Q then St satisfies the risk neutral pricing condition under

Q. What about σQ ? What can we say about it? It turns out that,σQ has to be

equal to σ if Q is equivalent to P . The reason will be explained in the Appendix for

continuity of exposition.

It turns out that, there is a theorem called the Girsanov theorem, that says there

exists such an equivalent measure Q. That is there exists a Q equivalent to P such

that under Q

dSt = rStdt+ σStdW
Q
t ,

where WQ is a BM under Q. We will take this as given in our further discussion

without further dicussing of the proof of Girsanov theorem. Moreover, we will slightly

abuse notation and write Wt instead of WQ
t even when we discuss the distribution of

St under Q.
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3 Pricing of finanical derivative

3.1 The first fundamental theorem of asset pricing in contin-

uous time

Theorem 3.1. Let St be a non-negative continuous stochastic process under P . Then

the market consisting of St and a saving account is arbitrage free if and only if there

exists an equivalent risk neutral measure Q. Moreover, for any financial derivative

based on S that makes a payment VT at time T , the no-arbitrage price of V at time

t is

Vt = EQ(e−r(T−t)VT |FSt ).

3.2 Pricing of Euro style derivative

Now suppose V is a Euro style derivative: VT = φ(ST ) (that is it is not path-

dependent). Then

Vt = EQ(e−r(T−t)φ(ST )|FSt )

= EQ
{
e−r(T−t)φ

(
Ste

(r− 1
2
σ2)(T−t)+σ(WT−Wt)

)∣∣∣FSt }.
Note that St is constant given FSt . WT −Wt is independent of FSt . That is, we

can use the Independence Lemma in the following form:

EQ(f(St,WT −Wt)|FSt ) = EQ(f(x,WT −Wt))|x=St .

4 Pricing of the Euro-call option - The Black-Scholes

formula

4.1 The Black-Scholes formula

Theorem 4.1. Suppose that under Q,

dSt = rStdt+ σStdWt.

Then the no-arbitrage price at time 0, V0 of a European call with strike K and expi-

ration time T satisfies

V0 = S0N(d1)−Ke−rTN(d2),
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where N(d1) = P (Z ≤ d1), Z standard Normal and

d1 =
(r + 1

2
σ2)T − log(K

S0
)

σ
√
T

d2 =
(r − 1

2
σ2)T − log(K

S0
)

σ
√
T

The formula for V0 is referred to as the Black-Scholes formula.

4.2 Outline of the proof of Black-Scholes formula

At the heart of it, the Black-Scholes formula is just computing the expectation of

(X−K)+, where X has log normal distribution. However, because of the parameters

and the log normal density involved, the computation may seem intimidating for the

first time. To help you keep track of what’s going on, just keep in mind the big steps

that we have to perform in this computation.

1. Computing E(X − K)+, for a continuous RV X with some density

φX(x).

The key for this step is to break the function (x−K)+ into two parts: x−K for

x > K and 0 for x < K. That is∫ ∞
−∞

(x−K)+φX(x) =

∫ ∞
K

(x−K)φX(x)

=

∫ ∞
K

xφX(x)−
∫ ∞
K

φX(x).

2. Recognize that
∫∞
K
φX(x) is just P (X > K).

3. Computing P (X > K) for X having log normal distribution.

The key to this step is just to write X as what it is in distribution: X = eY , where

Y have Normal distribution. Then

P (X > K) = P (eY > K) = P (Y > log(K)),

and we can use the Z-transform to turn P (Y > log(K)) into a standard Normal

calculation.

4. Recognizing that
∫∞
K
xφX(x) is E(X1X≥K) where X has log normal

distribution (recall the indicator function definition as 1E = 1 if E happens

and 0 otherwise).
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5. Computing E(X1X≥K) where X has log normal distribution.

The key to this step is also to write X as what it is in distribution: X = eY ,

where Y have Normal distribution. Then

E(eY 1eY ≥K) = E(eY 1Y≥log(K)) =

∫ ∞
log(K)

eyφY (y)dy,

where φY (y) is a Normal density. What we accomplished here is transforming a log-

normal expectation computation to a normal expectation computation (because it’s

complicated to figure out the density of a log-normal distribution).

6. Computing expression of the type E(eY ), where Y has Normal dis-

tribution.

The first key to this step is to recognize that eyφY (y), where φY (y) is a Normal

density will be an exponential function, since it will have the form

eyφY (y) = eye−
(y−µ)2

2σ2 .

The second key is to complete the square for the exponent of the exponential.

That is we want to write

eye−
(y−µ)2

2σ2 = e−(y − µ̃)2

2σ̃2
+ c,

for some constants µ̃, σ̃, c. The point is

e−
(y−µ̃)2

2σ̃2

is (modulo a constant) the density of a Normal(µ̃, σ̃) so it will integrate to one. The

constant ec will just factor out of the integration.

4.3 Proof of Black-Scholes formula

1. By the risk neutral pricing formula:

V0 = EQ(e−rTVT ) = EQ(e−rT (ST −K)+) = EQ
[
e−rT

(
S0e

(r− 1
2
σ2)T+σWT −K

)+
]

= EQ
[
e−rT

(
S0e

X −K)+
]
,
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where X has distribution N((r− 1
2
σ2)T, σ2T ). Note that S0e

X−K ≥ 0 iff X ≥ log(K
S0

).

Therefore

V0 =

∫ ∞
log( K

S0
)

e−rT (S0e
x −K)φX(x)dx

=

∫ ∞
log( K

S0
)

e−rTS0e
xφX(x)dx−

∫ ∞
log( K

S0
)

e−rTKφX(x)dx

:= A−B,

where φX(x) := 1√
2πσ2T

exp
(
− (x−µ)2

2σ2T

)
, µ := (r − 1

2
σ2)T is the density of X. We will

compute A and B separately.

2.

B =

∫ ∞
log( K

S0
)

e−rTKφX(x)dx = e−rTKP (X > log(
K

S0

))

= e−rTKP (Z >
log(K

S0
)− (r − 1

2
σ2)T

σT
)

= e−rTKN(d2),

where

d2 :=
(r − 1

2
σ2)T − log(K

S0
)

σ
√
T

.

3.

A =

∫ ∞
log( K

S0
)

e−rTS0e
xφX(x)dx

=
1√

2πσ2T

∫ ∞
log( K

S0
)

e−rTS0 exp
(
x− (x− µ)2

2σ2T

)
dx.

Clearly,

x− (x− µ)2

2σ2T
=

2σ2Tx− (x− µ)2

2σ2T
.

We complete the square in the numerator of the above fraction:

2σ2Tx− (x− µ)2 = −x2 + 2(σ2T + µ)x− µ2 = −
(
x− (σ2T + µ)

)2
+ (σ2T + µ)2 − µ2

= −(x− (σ2T + µ))2 + σ4T 2 + 2µσ2T.
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Thus

x− (x− µ)2

2σ2T
=
−(x− (σ2T + µ))2 + σ4T 2 + 2µσ2T

2σ2T

= −(x− (σ2T + µ))2

2σ2T
+

1

2
σ2T + µ.

Also note that

1

2
σ2T + µ =

1

2
σ2T + (r − 1

2
σ2)T = rT.

and

σ2T + µ = σ2T + (r − 1

2
σ2)T = (r +

1

2
σ2)T.

Therefore

A =
1√

2πσ2T

∫ ∞
log( K

S0
)

e−rTS0 exp
(
x− (x− µ)2

2σ2T

)
dx

=
1√

2πσ2T

∫ ∞
log( K

S0
)

S0 exp
(
−

(x− (r + 1
2
σ2)T )2

2σ2T

)
dx

= S0P
(
X̃ ≥ log(

K

S0

)
)
,

where X̃ has distribution N((r + 1
2
σ2)T, σ2T ). Thus

A = S0P (Z ≥
log(K

S0
)− (r + 1

2
σ2)T

σ
√
T

)

= S0N(d1),

where d1 =
(r+ 1

2
σ2)T−log( K

S0
)

σ
√
T

.

This finishes the derivation of Black-Scholes formula.

Remark 4.2. As we mentioned the heart of Black-Scholes formula is just computing

the expectation of a log-normal random variable. So if you understand the technique,

you can handle much more general Euro style derivative than just the Euro Call

option. For example, we can price a Euro style derivative that pays (S2
T − K)+ at

time T . The details are given at the Appendix.
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4.4 Pricing a Euro call option at time t

Theorem 4.3. Suppose that under Q,

dSt = rStdt+ σStdWt.

Then the no-arbitrage price at time t, Vt of a European call with strike K and expi-

ration time T satisfies

Vt = StN(d1(t))−Ke−r(T−t)N(d2(t)),

where

d1(t) =
(r + 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

d2(t) =
(r − 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

Proof. By the risk neutral pricing formula and the Independence Lemma:

Vt = EQ(e−r(T−t)VT |St) = EQ(e−r(T−t)(ST −K)+|St)
= EQ

[
e−r(T−t)

(
xe(r− 1

2
σ2)(T−t)+σ(WT−Wt) −K

)+
]∣∣∣
x=St

= EQ
[
e−rT

(
xeX −K)+

]∣∣∣
x=St

,

where X has distribution N((r − 1
2
σ2)(T − t), σ2(T − t)).

Thus we see that we just repeat exactly the same calculation as the original Black-

Scholes formula at time t = 0, replacing S0 with St and T with T − t. The conclusion

now follows.

5 Appendix

5.1 σQ = σ between the risk neutral and physical measures

Why does σQ have to be equal to σ if Q is equivalent to P? It is because of the

following law of iterated logarithm: if Wt is a BM under P then

P
{

lim sup
t→∞

Wt√
2t log log(t)

= 1
}

= 1.
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Thus if Q is to be equivalent to P , the Brownian motion Wt cannot be a scaled

version of WQ
t . If σQ 6= σ then essentially we would have WQ

t as a scaled version of

Wt. Then the law of iterated logarithm would require

PQ
{

lim sup
t→∞

Wt√
2t log log(t)

= 1
}

= 1,

since Q and P are equivalent. But this cannot happen, since we also have

PQ
{

lim sup
t→∞

WQ
t√

2t log log(t)
= 1
}

= PQ
{

lim sup
t→∞

cWt√
2t log log(t)

= 1
}

= 1,

where c is the scaling factor.

Since the two sets{
lim sup

t→∞

Wt√
2t log log(t)

= 1
}
,
{

lim sup
t→∞

WQ
t√

2t log log(t)
= 1
}

are disjoint, it cannot happen that PQ of these two sets are 1.

5.2 Pricing a Euro style derivative with payment VT = (S2
T −

K)+

Lemma 5.1. Suppose we have a Euro-style derivative that pays (S2
T −K)+ at time

T where St is a geometric BM:

dSt = rStdt+ σStdWt

Then the no arbitrage at time 0 of this derivative is

V0 = e(r+σ2)T [S2
0N(d̄1)− e−rT K̄N(d̄2)].

where

d̄1 =
(r + 2σ2)T − log( K̄

S2
0
)

2σ
√
T

d̄2 =
(r − 2σ2)T − log( K̄

S2
0
)

2σ
√
T

K̄ =
K

e(r+σ2)T
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Proof. From the pricing formula:

V0 = E(e−rT (S2
T −K)+).

Note that

S2
T = S2

0 exp((2r − σ2)T + 2σWT ).

We need to utilize the Black-Scholes formula, so we want to compare S2
t with a

process with volatility 2σ. So we consider the process S̄t where

dS̄t = rS̄tdt+ 2σS̄tdWt

S̄0 = S2
0 .

That is

S̄t = S2
0 exp((r − 2σ2)t+ 2σWt). (1)

The Black-Scholes formula gives

E(e−rT (S̄T −K)+) = S̄0N(d̄1)−Ke−rTN(d̄2),

where

d̄1 =
(r + 2σ2)T − log( K

S2
0
)

2σ
√
T

d̄2 =
(r − 2σ2)T − log( K

S2
0
)

2σ
√
T

So in the original computation:

V0 = E(e−rT (S2
T −K)+)

= E
(
e−rT (S2

0 exp((2r − σ2)T + 2σWT )−K)+
)

= e(r+σ2)TE
(
e−rT (S2

0 exp((r − 2σ2)T + 2σWT )− K̄)+
)

= e(r+σ2)TE
(
e−rT (S̄T − K̄)+

)
,

where K̄ = K

e(r+σ
2)T
. Now we have rewritten the formula in the form similar to (1)

with S̄0 = S2
0 . Therefore, the conclusion is

V0 = e(r+σ2)T [S2
0N(d̄1)− e−rT K̄N(d̄2)].
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Proof. Alternative derivation

We can rephrase Black-Scholes formula this way:

e−rTEQ
(

(S̄0e
µ̄T+σ̄WT −K)+

)
= e−rT

(
e(µ̄+ 1

2
σ̄2)T S̄0N(d1)−KN(d2)

)
,

where

d1 =
(µ̄+ σ̄2)T − log

(
K
S0

)
σ̄
√
T

d2 =
µ̄T − log

(
K
S0

)
σ̄
√
T

.

Thus in computing

V0 = E(e−rT (S2
T −K)+) = E

(
e−rT (S2

0e
(2r−σ2)T+2σWT )+

)
,

we only have to plug in the above with

S̄0 = S2
0

µ̄ = 2r − σ2

σ̄ = 2σ.

In this case, we have

V0 = e−rT
(
e(2r+2σ2)TS2

0N(d1)−KN(d2)
)

= e(r+σ2)TS2
0N(d1)−Ke−rTN(d2),

where

d1 =
(2r + 3σ2)T − log

(
K
S2
0

)
2σ
√
T

d2 =
(2r − σ2)T − log

(
K
S2
0

)
2σ
√
T

.

You can check that this is exactly what we got in the first derivation.
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5.3 Some further Black-Scholes computation suggestion

You can practice manipulating Black-Scholes formula by considering pricing, that is,

find Vt, for the following Euro style derivative, all with expiration T , assuming the

Black-Scholes model:

a. VT = log(ST );

b. VT = SβT , β a constant;

c. VT = 1ST≥K , the so-called Binary or cash or nothing option;

d. VT = 1K1≤ST≤K2 , a generalization of the Binary option;

e. VT2 =
ST1
ST2

, T1 < T2 are two fixed times, the option expires at T2.

6 Binomial approximation to Black-Scholes price

In this section, we compare the price obtained by Black-Scholes formula with the

Binomial tree model, where St is a Geometric BM:

dSt = rStdt+ σStdWt (2)

We will show through an example that the two prices are close to each other. This

is not a surprising result, as we showed that the Black-Scholes are indeed obtained

from the continuous limit of the Binomial model. You can believe that as the number

of periods in the Binomial model grow (so that the length of the period decreases)

the price obtained by the Binomial model will converge to the price given by the

Black-Scholes model.

6.1 The Black-Scholes price:

For simplicty, we let r = 0, σ = 0.1, T = 1, S0 = 1000 and K = 1000. Then the

Black-Scholes formula for Euro-Call is

V0 = S0N(d1)−KN(d2)

where

d1 =
1
2
σ2T − log(K

S0
)

σ
√
T

= 0.05

Similarly d2 = −0.05. Thus V0 = 1000(0.52− 0.48) = 40.
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6.2 The approximation:

We now divide [0, 1] into n = 5 intervals. The discrete approximation to (2) is

Stk+1
− Stk = rSk(tk+1 − tk) + σSk(Wtk+1

−Wtk)

where k = 0, 1, ..., 5 and t0 = 0, t1 = 0.2, ..., t4 = 0.8, t5 = 1.

Wtk+1
−Wtk has distribution N(0, tk+1−tk). We approximate this by

√
tk+1 − tkYk

where

Yk = 1 with probability
1

2

= −1 with probability
1

2
.

For short-hand, we will write Sk for Stk . The evolution equation for Sk becomes

Sk+1 = Sk(1 + σ
√
tk+1 − tkYk).

Note that this is exactly the Binomial model we have studied before with Xk =

1 + σ
√
tk+1 − tkYk. Plug in , we have

Xk = 1.044 with probability
1

2

= .956 with probability
1

2
.

Draw out the binomial tree, we see that the price for Euro Call on Sk with strike

1000 and expiration time n = 5 is

V b
0 =

(
240 + 5× 135 + 10× 39.9

) 1

25
= 41.06

This is not a very precise approximation to the Black-Scholes price of course

(which gives 40 as in Section 2) but considering we only used 5 steps it is not terrible.

The point of this computation is to convince you again that indeed the Geometric

Brownian motion can be viewed as the limit of the Binomial tree as the time step

gets closer to 0.
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