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1 Introduction

We have seen that the discrete time binomial model provides some rich features to

our modeling of a financial asset. In particular, it allows us to discuss the pricing

path dependent derivatives and American options, which would be trivial in the 1

period model. However, the discrete time model is still limiting in a sense: we’re

only allowed to take action; and the underlying asset can only change value at certain

discrete points in time. Between these points, no change and no action can happen.

Of course the situation can be improved by adding more discrete time points.

The finer the decision making process (making decisions more often), or the richer

the movement of the underlying becomes, the more points we will have to add to

the model. Eventually you can see that our model approaches some kind of con-

tinuous time process. The question is how can we do it in a tractable way? Let’s

call our process St and suppose it’s defined for every t in [0, T ] (by approximation).

Tractable here means, for one thing, that our approximation should converge. (Not

every refining procedure will converge, as you may have learned with a non-Riemann

integrable function - the refining procedure there for the integral of such a function

does not converge). For another, we want to be able to compute the distribution of St

at any time t, as well as the joint distribution of St1 , St2 , · · · , Stn for any time points

t1, t2, · · · , tn. Beyond this we would like to know as much about St as possible. The

key tool for us is the CLT.
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2 The approximating discrete time binomial model

As the introduction section alluded to, we need to do our approximation in the right

way. For example, observe that if SN = S0X1X2 · · ·XN then

log(Sn) = log(S0) +
N∑
k=1

log(Xk).

Thus

E(log(SN)) = log(S0) +NE(log(X1));

V ar(log(SN)) = NV ar(log(X1)).

As we add more time points (increasing N) we would want to keep the E(log(SN))

and V ar(log(SN)) constant. After all, it is the distribution of the asset at the terminal

time T = NδT . Also, the spirit of CLT is that if we have a sequence of partial sum

of i.i.d random variables, scaled in such a way that ther expectation and variance

remains constant:

E

(∑n
i=1Xi − µ
σ
√
n

)
= 0;

V ar

(∑n
i=1Xi − µ
σ
√
n

)
= 1.

then the sequence of partial sum will converge.

This motivates us to model Xi as followed: for a fixed µ, σ

Xi = eµ∆T+σ
√

∆Tξi ,

where P (ξi = 1) = P (ξi = −1) = 1/2, and the ξi are independent.

Note that this is just another way to express our previous discrete time model,

with

u = eµ∆T+σ
√

∆T ;

d = eµ∆T−σ
√

∆T .

Given u, d, we can solve for µ, σ such that the above system is satisfied. Note also

that the no arbitrage condition requires:

µ∆T − σ
√

∆T < r∆T < µ∆T + σ
√

∆T .
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Also note that the probability given above is the real world probability, not the

risk neutral probability. The choice of 1/2 may seem a bit arbitrary, but keep in mind

that the real world probability is irrelevant for pricing. We only need to build a model

with rich enough structure to capture the up and down movement of the asset. The

choice of 1/2 helps us to prove the convergence of the model in an easier way. Also

note that we can even make µ and σ be random variables, if you feel adventurous.

For now we’ll just keep them constants.

Lastly we want to verify that the expectation and variance of log(SN) is constant:

E(log(SN)) = log(S0) +NE(log(X1)) = log(S0) + µN∆T = log(S0) + µT ;

V ar(log(SN)) = NV ar(log(X1)) = σ2N∆T = σ2T.

3 Converging to the continuous model

We will now denote SN as ST (since T = N∆T ). From the previous section, we have

log(ST ) = log(S0) + µT +
N∑
i=1

σ
√

∆Tξi

= log(S0) + µT + σ
√
T

∑N
i=1 ξi√
N

.

Let N →∞, by the CLT, we see that ST has distribution

log(ST ) = log(S0) + µT + σWT ,

where WT has distribution N(0, T ) (one can represent WT =
√
TN(0, 1) as well).

By a similar argument, partitioning the interval [t, T ] into N sub-interals, and let

N →∞ we also have

log(ST ) = log(St) + µ(T − t) + σWT−t,

where WT−t has N(0, T − t) distribution.

Moreover, since the increments ξi are independent, it can be shown that WT−t is

indendent of Wt (where Wt is the RV we get for partitioning the interval [0, t] and

let N → ∞). In fact, by the same argument, you can see that WT−t is indendent of

Wr, 0 ≤ r ≤ t. This is the so called independent increment propety we’ll discuss later.

Thus, in summary, one can say that our continuous model, derived from the limit

of the discrete binomial model, satisfies the following properties in distribution:
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a. For any s < t

St = Sse
µ(t−s)+σWt−s ,

Wt−s has N(0, t− s) distribution, Wt−s is indendent of Wr, 0 ≤ r ≤ s.

b. In particular,

St = S0e
µt+σWt .

We say St has log normal distribution (the log of St has Normal distribution).

4 The dynamics of St

4.1 Evolution in discrete time

In the discrete time model, the evolution of Sn is clear. At the next time point n+ 1,

to get the value of Sn+1, we just have to multiply Sn with Xn+1, where Xn+1 =

eµ∆T+σ
√

∆Tξn+1 as described above. In other words

Sn+1 = Sne
µ∆T+σ

√
∆Tξn+1 .

Equivalently, at the next time point n + 1, to get the value of log(Sn+1), we just

have to add log(Sn) with µ∆T + σ
√

∆Tξn+1. We say

∆ log(Sn) := log(Sn+1)− log(Sn) = µ∆T + σ
√

∆Tξn+1.

This is a discrete recursion equation that specifies the dynamics of log(Sn). We would

like to get an equation for the dynamics of Sn:

∆Sn := Sn+1 − Sn =?

But in our discrete time model, this won’t be anything nice. You’ll see that the

situation is different in the continuos time.

4.2 Evolution in continuous time

In the continuous time context, ∆T becomes dt (dt is not a real physical quantity,

it’s a differential and only makes sense within an integral sign. Nevertheless, it can

be used to specify the dynamics of a process in time, as long as we are clear on what

we mean by using dt).
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Formally, we have

St+dt = Ste
µdt+σ

√
dtξt ,

where ξt takes values ±1 with probability 1/2 each. Apply Taylor’s expansion on the

exponential term, we get

St+dt = St(1 + µdt+ σξt
√
dt+

1

2
σ2ξ2

t dt+ higher order terms)

= St(1 + [µ+
1

2
σ2]dt+ σξt

√
dt+ higher order terms)

= St + St[µ+
1

2
σ2]dt+ σStξt

√
dt+ Sthigher order terms).

since ξ2
t = 1. What we mean by the above is, provide we can make sense of the

intergration, we have for s < t

St = Ss +

∫ t

s

[µ+
1

2
σ2]Sudu+

∫ t

s

σSuξu
√
du+

∫ t

s

higher order terms.

By higher order terms, we mean terms of order higher than dt3/2. As we will explain

later, the intergral of the form∫ t

s

higher order terms =

∫ t

s

O(dt3/2) = 0.

Also the integral needs to be explained, because of the term∫ t

s

σSuξu
√
du.

As we’ll also explain,
∫
O(
√
dt) = ∞. Thus the term

∫ t
s
σSuξu

√
du is undefined.

However, St is defined (we got it as a limit of convergence of the discrete model, and

we have a distribution for St). Thus there must be a way to define
∫ t
s
σSuξu

√
du. As

you’ll see, this will lead to the definition of Brownian motion and Ito Calculus.

The bottomline is, provided we can make sense of these technical details, we have

arrived at the dynamics of St as we wished for in the continuous time, using the

Taylor’s expansion:

dSt := St+dt − St = St[µ+
1

2
σ2]dt+ σStξt

√
dt,

where we thow away the higher order terms since it disappears in the integral,

which is the rigorous sense we want to give to the above dynamical equation anyway.
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5 Prelude to Brownian motion and Ito Calculus

5.1 Brownian motion

As you can observe from the previous sections, the term that makes St a random

variable is Wt in

St = S0e
µt+σWt ,

or Wt−s is

St = Sse
µ(t−s)+σWt−s ,

or ξu in

St = Ss +

∫ t

s

[µ+
1

2
σ2]Sudu+

∫ t

s

σSuξu
√
du.

Indeed, there is reason to believe these are all different forms of one single process,

let’s call it Wt where corresponding to the above we have

Wt = Wt

Wt−s = Wt −Ws√
duξu = dWu.

Let’s see what we have learned about this process Wt so far:

a. Wt −Ws is independent of Wr, 0 ≤ r ≤ s.

b. Wt −Ws has N(0, t− s) distribution.

Surprisingly, these two characteristics are enough to specify a unique stochastic

(random) process called the Brownian motion. As typical in mathematics, now that

we have the intuition, we’ll take the reverse approach and define Brownian motion as

a process satisfying properties a and b. We then build a model for the underlying St

out of this Brownian motion Wt. The question is: how do we build St?

5.2 Ito Calculus

The short answer to the question how to build St is to specify its dynamics:

dSt = Stµdt+ σStdWt,

S0 = x.
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Then we will find, if possible, a process St that has the above dynamics. Yet this

involves several significant difficulties. First of all, the above is a Stochastic Differen-

tial Equation (SDE). Equation because St appears on both sides of the equality (re-

call Ordinary Differental Equation (ODE) and what makes it a differntial equation).

Stochastic because the equation relates random quantities on both sides. Differential

because it involves dt and dWt.

Even ignoring the issue that we are dealing with a SDE, there is even a more

fundamental issue: what do we mean by∫ t

0

f(u)dWu,

for a (possibly random) process f(u). The reason is we have seen in some sense∫ t

0

f(u)dWu =

∫ t

s

f(u)ξu
√
du,

and integrating with respect to the term
√
du has to be interpreted in a special way.

Being able to give a sense to integrating with dWu is one fundamental result in the

Ito Calculs: the so-called Ito’s integral.

Similar to classical Calculus (but in some sense developing things in the reverse

order), after we have a notion of the integral, we want to have notion of differentiation.

That is, what is the “derivative” with respect to t (to time) of a term like

St =

∫ t

0

α(u)du +

∫ t

0

σ(u)dWu?

In some sense, the answer has been given above, the “derivative” is given in terms

of the differential:

dSt = α(t)dt+ σ(t)dWt.

The reason we don’t have a proper derivative with respect to t is because Wt is

NOT differentiable in t, another characteristic property of Brownian motion.

Then what about the “derivative” of a function os St, say S2
t ? This is to ask for

the chain rule for the stochastic calculus. The chain rule in this case is referred to as

Ito’s formula.

Lastly, how can we solve a SDE? After having the chain rule, we can develop some

basic techniques to find the explicit solution for some basic form of SDEs, in which
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the equation

dSt = Stµdt+ σStdWt,

S0 = x

is included. St in this case will be referred to as Geometric Brownian motion.

6 The Lebesgue-Stiltjes integral

6.1 The Riemann integral

Suppose we have a partition of the interval [0, T ]: 0 = t0 < t1 < · · · < tn = T and a

function f(t) on [0, T ] that has nice properties. Define ‖∆‖ = maxi(ti+1 − ti) as the

mesh of this particular partition. Then

n∑
i=1

f(ti)(ti+1 − ti)→
∫ t

0

f(s)ds,

as ‖∆‖ → 0.

Additionally, if we try the following:

n∑
i=1

f(ti)(ti+1 − ti)1+ε

or

n∑
i=1

f(ti)(ti+1 − ti)1−ε

for some ε > 0 you’ll see that

n∑
i=1

f(ti)(ti+1 − ti)1+ε → 0

and

n∑
i=1

f(ti)(ti+1 − ti)1−ε →∞

as ‖∆‖ → 0. The intuitive reason is because

n∑
i=1

f(ti)(ti+1 − ti)1+ε =
n∑
i=1

f(ti)(ti+1 − ti)(ti+1 − ti)ε
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and since
n∑
i=1

f(ti)(ti+1 − ti)→
∫ t

0

f(s)ds,

(ti+1 − ti)ε → 0,

the product converges to 0. Similarly,

n∑
i=1

f(ti)(ti+1 − ti)1−ε =
n∑
i=1

f(ti)(ti+1 − ti)
(ti+1 − ti)ε

which goes to infinity.

Formally we write ∫ t

0

f(t)(dt)1+ε = 0∫ t

0

f(t)(dt)1−ε = ∞,

where ∫ t

0

f(t)(dt)1+ε = lim
‖∆‖→0

n∑
i=1

f(ti)(ti+1 − ti)1+ε

∫ t

0

f(t)(dt)1−ε = lim
‖∆‖→0

n∑
i=1

f(ti)(ti+1 − ti)1−ε

In particular, ∫ t

0

f(t)(dt)2 = 0∫ t

0

f(t)
√
dt = ∞,

6.2 Some examples

Example 6.1.

lim
n→∞

n∑
i=1

i

n2
=

∫ 1

0

tdt =
t2

2

∣∣∣1
0

=
1

2
,

where we see the sum on the LHS as the function f(t) = t evaluated at the grid point
i
n

and ti+1 − ti = i+1
n
− i

n
= 1

n
.
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Note that the sum above can be checked straightforwardly by using the identity

n∑
i=1

i =
n(n+ 1)

2
.

The point is this simple example allows us to verify that∫ 1

0

t
√
dt = ∞∫ 1

0

t(dt)2 = 0

since

lim
n→∞

n∑
i=1

i

n

1

n2
= lim

n→∞

n(n+ 1)

2n3
= 0

lim
n→∞

n∑
i=1

i

n

1√
n

= lim
n→∞

n(n+ 1)

2n
√
n

=∞.

6.3 The Lebesgue-Stiltjes integral

You may ask why do we even care about expression like
∫ t

0
f(s)
√
ds or

∫ t
0
f(s)(ds)2,

since we never see them in calculus. This is true, because all we’ve dealt with there

were Riemann integral. However, we can generalize the notion of integration in the

following way: let g(x) be a function defined on [0, T ] with nice property. Then we

can define ∫ T

0

f(s)dg(s) := lim
‖∆‖→0

n∑
i=1

f(ti)(g(ti+1)− g(ti)),

if the limit on the RHS exists. This is called the Lebesgue-Stiltjes integral of f against

g.

And since now we deal with general function g, you can see that there are such

functions that when ti+1 − ti is small

g(ti+1)− g(ti) ≈
√
ti+1 − ti.

(Such function g is not one of your classical calculus examples. At least if you look

among the differentiable functions you won’t find one. The reason is if g is differen-

tiable, then first order approximation tells us that

g(ti+1)− g(ti) ≈ g′(ti)(ti+1 − ti),
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so it’s of order O(dt), not O(
√
dt).)

Our discussion above shows us that for such function g the Lebesgue-Stiltjes in-

tegral for f against g does not exist. As you will see, the Brownian motion paths

give us such an example of a function g, which makes it necessary to define the Ito’s

integral.

6.4 An example

Actually if you have done u-substitution in Calculus, you have performed the Lebesgue-

Stiltjes integral (possibly without realizing it). Consider the following example:∫ 1

0

2xex
2

dx =

∫ 1

0

eudu,

where you made the substitution

u = x2

du = 2xdx.

More explicitly you consider u as a function of x:

u(x) = x2

du/dx = 2x.

But another way to write this is you’re evaluating the integral∫ 1

0

ex
2

du(x) =

∫ 1

0

ex
2

u′(x)dx =

∫ 1

0

ex
2

2xdx.

That is you integrate ex
2

with respect to u(x) = x2 over the interval [0, 1].

6.5 The Lebesgue-Stiltjes integral as an example of portfolio

value

You may ask when we need to use the Lebesgue-Stiltjes integral. Consider the fol-

lowing example.

Let 0 = t0 < t1 < ... < tn = T be a partition of [0, T ]

Consider an investor who invests in an underlying asset S and the saving account

such that the portfolio is self-financing. Let πk = πtk be the value of the portfolio

and ∆k be the number of shares of S he holds at time k. Then

πk+1 = ∆kSk+1 + er∆T (πk −∆kSk).
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We will replace er∆T with 1 + r∆T , i.e. continuous compounding with discrete

compouding. They should be very close, if ∆T is small. Then the self-financing

equation reads

πk+1 = ∆kSk+1 + (1 + r∆T )(πk −∆kSk),

or

πk+1 = πk + ∆k(Sk+1 − Sk) + r∆T (πk −∆kSk)

= πk + ∆k(Sk+1 − Sk) + ykr(tk+1 − tk)

=
k∑
i=1

∆i(Si+1 − Si) + yir(ti+1 − ti).

where yk is the amount of cash we holds at time k. Thus you see that if we consider

∆(t), y(t) as a function of t, self-financing requiring that ∆(t) + y(t) = π(t), letting

‖∆‖ → 0 we get

πt =

∫ t

0

∆udSu +

∫ t

0

yurdu.

Thus the amount of money we get from investing in the stock in the continuous

time is a Lebesge-Stiltjes integral.

Note: if you replace yu = πu − rSu, then the above equation reads

πt =

∫ t

0

∆u(dSu − rSudu) +

∫ t

0

πurdu,

which has the following interpretation:

When you invest in a risky asset (S) in such a way that your portfolio is self-

financing, your gain can be decomposed in two components: the deterministic compo-

nent, which is just the saving account:
∫ t

0
πurdu. The other component is how the un-

derlying asset performs versus the saving account: if it performs better: dSu > rSudu

then your portfolio will perform better than the traditional saving. If it performs

worse: dSu < rSudu then your portfolio will perform worse than the traditional

saving.

12


