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1 Introduction

In this note we discuss the two fundamental theorems of asset pricing. The mathe-

matical tool for discussion is martingale theory in discrete time. We will define the

notion of martingales, and show that under the risk neutral measure, the discounted

asset price is a martingale. By our pricing formula, the discounted value process of

a non-American financial derivative is also a martingale under the risk neutral mea-

sure. This is used to prove the first fundamental theorem of asset pricing. Under the

uniqueness of the risk neutral measure, we show the existence of the hedging portfolio

for non-American financial derivatives. Finally, we show the existence of the hedging

portfolio for American put option, by characterizing it as a super-martingale under

the risk neutral measure.

2 Martingale in discrete time

A process Vk is a martingale with respect to the filtration FS
k under a probability

measure P if:

a. Vk ∈ FS
k for all k.

b. For all n ≥ m, E(Vn|FS
m) = Vm.

Remark:

1. Condition a means that each Vk is a function of S0, S1, · · · , Sk. This is consistent

with our intuition that the value of the financial derivative should only depend on

the historical price of the underlying asset. Observe that Sk+1 6∈ FS
k in our binomial

model.
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2. Condition b is the martingale condition. The expectation E is taken under

the probability P . This is essential: if we change the measure P , this condition may

not hold. Thus Vk can be that a process is a martingale under some measure but not

under some other measure (think about the risk neutral meassure for example).

Similarly, Vk is a sub (super)-martingale with respect to the filtration FS
k under

a probability measure P if:

a. Vk ∈ FS
k for all k.

b. For all n ≥ m, E(Vn|FS
m) ≥ (≤)Vm.

3. Sometimes we just say Sk is a martingale (under probability P ). Then it is

understood that the filtration is Sk’s own filtration (FS
k ).

2.1 Some examples

The following are the most important examples we encountered so far:

1. The discounted stock price e−rk∆TSk is a martingale with respect to FS
k under

the risk neutral measure Q (but not neccessarily under the physical measure P ).

2. The discounted value of a European option e−rk∆TVk is a martingale with

respect to FS
k under the risk neutral measure Q.

3. The discounted value of an American option e−rk∆TVk is a super-martingale

with respect to FS
k under the risk neutral measure Q.

3 The first fundamental theorem of asset pricing

3.1 Betting against a martingale

A martingale is essentially a model for a fair game. First note that if Vk is a martingale

with respect to FS
k under P then E(Vk) = E(Vk−1) = · · · = E(V0). Thus if you treat

Vk as your total earning when investing in S then its expected earning is a constant

in time if Vk is a martingale. Actually something stronger is true: your expected

earning based on S at any time in the future, conditioned on the information up to

the current time: E(Vn|FS
m), is the same as your current earning based on S: Vm.

This is what we think of as fair.

We can also look at the reverse direction. If Sk is a martingale with respect to

Fk then the total earning under any strategy you can form investing using Sk is also

a martingale, as long as your strategy at time k only uses the information about S

up to time k (this excludes insider trading for example). More specifically, let ∆k be
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the number of shares we hold of S at time k, then our net “winning” over the period

[k, k + 1] is ∆k(Sk+1 − Sk) and our total winning up to a time n is

πn =
n−1∑
k=0

∆k(Sk+1 − Sk).

The notation π is used specifically to represent the value of our portfolio of S at

time n. We have the following lemma:

Lemma 3.1. If ∆k ∈ FS
k and Sk is also a martingale then πn is also a martingale

with respect to FS
n .

(From now on, we’ll refer to any process Xk that has the property Xk ∈ FS
k as

being adapted to FS
k .)

Proof. It suffices to show E(πn+1|FS
n ) = πn (Why?). It is equivalent to show

E(πn+1 − πn|FS
n ) = 0.

But note that

πn+1 − πn = ∆n(Sn+1 − Sn).

Thus

E(πn+1 − πn|FS
n ) = E(∆n(Sn+1 − Sn)|FS

n )

= ∆nE(Sn+1 − Sn|FS
n ) = 0.

Similarly, we can show that if Sk is a sub (super) martingale then πn is a sub

(super) martingale under similar conditions. A sub (super) martingale represents a

game that favors one particular side of the game, either the house or the player.

3.2 Self-financing portfolio as a martingale

Remark 3.2. In our model, Sk is NOT a martingale, but e−rk∆TSk is. But one

does not invest in a discounted stock price process in reality. What one

does is investing in (possibly multiple) financial assets and a saving account. The

corresponding result is that if the portfolio is self financing then its discoutned value

process is also a martingale under the risk neutral measure. The following lemma

states the result more precisely.
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Lemma 3.3. Suppose at any time k we hold ∆k shares of the asset S and yk in the

saving account. Suppose e−rk∆TSk is a martingale. If ∆k is adapted to FS
k and the

self-financing condition holds:

πk+1 = ∆k+1Sk+1 + yk+1 = ∆kSk+1 + yke
r∆T . (1)

or equivalently

πk+1 = ∆kSk+1 + er∆T (πk −∆kSk). (2)

then e−rk∆Tπk is also a martingale under FS
k .

Proof. Suppose e−rk∆TSk is a martingale. It is enough to show

EQ
[
e−r∆Tπk+1|FS

k

]
= πk.

From the self-financing condition, we have

EQ
[
e−r∆Tπk+1

∣∣∣FS
k

]
= EQ

[
e−r∆T∆kSk+1 + (πk −∆kSk)

∣∣∣FS
k

]
= ∆kE

Q
[
e−r∆TSk+1 − Sk|FS

k

]
+ πk = πk.

Remark 3.4. We do NOT have a similar conclusion in the self-financing portfolio

case when e−rk∆TSk is a super (sub) martingale, that is correspondingly e−rk∆Tπk is

also a super (sub) martingale. The reason is the sign of ∆k matters in this case. If we

short an asset that is a super martingale (that is it decreases on average), then we’re

likely to make money in the future (that is the portfolio will be a sub-martingale). But

if we long an asset that is a super martingale, then we’re likely to lose money (that is

the portfolio remains a super-martingale). The following calculation makes it clear:

Suppose e−k∆TSk is a super martingale. Then

EQ
[
e−r∆TSk+1|FS

k

]
≤ Sk.

From the self-financing condition, we have

EQ
[
e−r∆Tπk+1

∣∣∣FS
k

]
= EQ

[
e−r∆T∆kSk+1 + (πk −∆kSk)

∣∣∣FS
k

]
= ∆kE

Q
[
e−r∆TSk+1 − Sk|FS

k

]
+ πk

≤ πk, if ∆k ≥ 0

≥ πk, if ∆k ≤ 0.

4



3.3 Market with more than 1 assets

The result about self-financing portfolio also holds in market with more than 1 asset

S1, S2, · · · , Sm. We just have to generalize the self-financing condition to:

πk+1 =
∑
i

∆i
kS

i
k+1 + er∆T (πk −

∑
i

∆i
kS

i
k).

Our result is

Lemma 3.5. Suppose at any time k we hold ∆i
k shares of asset Si and yk in cash.

Suppose e−rk∆TSi
k is a martingale for all i. If ∆i

k is adapted to FS
k and the self-

financing condition holds:

πk+1 =
∑
i

∆i
kS

i
k+1 + er∆T (πk −

∑
i

∆i
kS

i
k). (3)

then e−rk∆Tπk is also a martingale under FS
k .

Proof. Suppose e−rk∆TSi
k is a martingale for all i. It is enough to show

EQ
[
e−r∆Tπk+1|FS

k

]
= πk.

From the self-financing condition, we have

EQ
[
e−r∆Tπk+1

∣∣∣FS
k

]
= EQ

[
e−r∆T

{∑
i

∆i
kS

i
k+1

}
+ (πk −

∑
i

∆i
kS

i
k)
∣∣∣FS

k

]
= EQ

[∑
i

∆i
k

{
e−r∆TSi

k+1 − Si
k

}∣∣∣FS
k

]
+ πk

=
∑
i

∆i
kE

Q
[
e−r∆TSi

k+1 − Si
k|FS

k

]
+ πk = πk.

3.4 The first fundamental theorem of asset pricing

We are in the position to prove the first version of the fundamental theorem of asset

pricing for discrete time model.

Theorem 3.6. Let a market have m risky assets S1, S2, · · · , Sm. Suppose an equiv-

alent risk neutral measure Q exists, that is Q is equivalent to P and

Si
k = EQ(e−r∆TSi

k+1|FS
k ), i = 1, · · · ,m.

Suppose additionally that all derivatives that make payment VN at time N satisfy

Vk = EQ(e−r∆T (N−k)VN |FS
k ),
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then there is no self-financing portfolio consisting of Si, V and the saving account

such that π0 = 0 and P (πl ≥ 0) = 1, P (πl > 0) > 0 for 0 < l ≤ N . That is the market

is arbitrage free.

Proof.

Suppose at time 0 we hold ∆i shares of asset Si and y dollars in cash, as well as

∆ shares of V such that π0 = 0. Then because e−rk∆TVk is also a martingale under

Q, we conclude e−rk∆Tπk is a martingale by Lemma (3.5). Thus

EQ
(
e−rl∆Tπl

)
= π0 = 0.

Now since we’re in a discrete space model, there are only finitely many outcomes

ω1, ω2, · · · , ωn at time l. Let PQ(ωi) = qi and note that by the equivalence condition,

qi > 0,∀i. Then

q1πl(ω1) + q2πl(ω2) + · · ·+ qnπl(ωn) = 0.

Thus it must follow that either πl(ωi) = 0,∀i or there exists i such that πl(ωi) < 0.

Theorem 3.7. Let a market have m risky assets S1, S2, · · · , Sm. Suppose that there

is no arbitrage opportunity in the market. Then a risk neutral measure Q exists, that

is

Si
k = EQ(e−r∆TSi

k+1|FS
k ), i = 1, · · · ,m.

Moreover, all derivatives that make payment VN at time N must satisfy

Vk = EQ(e−r∆T (N−k)VN |FS
k ),

Remark 3.8. Theorem (3.6) and (3.7) together can be stated simply as a market is

arbitrage free if and only if an equivalent risk neutral measure exists.

Proof. WLOG we prove the statement for N = 1. We restate the statements of

Theorem (3.6) and (3.7) into the following:

There exists a vector Q = [q1, q2, · · · , qn]T > 0 so that
e−r∆TS1

1(ω1) e−r∆TS1
1(ω2) · · · e−r∆TS1

1(ωn)

e−r∆TS2
1(ω1) e−r∆TS2

1(ω2) · · · e−r∆TS2
1(ωn)

· · ·
e−r∆TSm

1 (ω1) e−r∆TSm
1 (ω2) · · · e−r∆TSm

1 (ωn)

1 1 · · · 1



q1

q2

· · ·
qn

 =


S1

0

S2
0

· · ·
Sm

0

1

 ,
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if and only if we cannot find a vector ∆ = [∆1,∆2, · · · ,∆m,∆m+1]T so that

[
S1

0 S2
0 · · · Sm

0 1
]


∆1

∆2

· · ·
∆m

∆m+1

 = 0 (4)

and


S1

1(ω1) S2
1(ω1) · · · Sm

1 (ω1) er∆T

S1
1(ω2) S2

1(ω2) · · · Sm
1 (ω2) er∆T

· · ·
S1

1(ωn) S2
1(ωn) · · · Sm

1 (ωn) er∆T




∆1

∆2

· · ·
∆m

∆m+1

 	 0, (5)

where by z 	 0 we mean z ≥ 0 and g 6= 0.

Conditions (4) and (5) can be combined into one statement: we cannot find vector

∆ = [∆1,∆2, · · · ,∆m]T so that


S1

1(ω1)− er∆TS1
0 S2

1(ω1)− er∆TS2
0 · · · Sm

1 (ω1)− er∆TSm
0

S1
1(ω2)− er∆TS1

0 S2
1(ω2)− er∆TS2

0 · · · Sm
1 (ω2)− er∆TSm

0

· · ·
S1

1(ωn)− er∆TS1
0 S2

1(ωn)− er∆TS2
0 · · · Sm

1 (ωn)− er∆TSm
0




∆1

∆2

· · ·
∆m

 	 0.

Stated in this way, this is a well-known result in linear programming, known as

Stiemke’s Theorem. It is as followed: Let A be a m× n matrix. Then exactly one of

the following system has a solution:

a. yTA 	 0 for some y ∈ Rm

or

b. Ax = 0, x > 0, x ∈ Rn.

Applying Stiemke’s Theorem to our situation with

AT =


S1

1(ω1)− er∆TS1
0 S2

1(ω1)− er∆TS2
0 · · · Sm

1 (ω1)− er∆TSm
0

S1
1(ω2)− er∆TS1

0 S2
1(ω2)− er∆TS2

0 · · · Sm
1 (ω2)− er∆TSm

0

· · ·
S1

1(ωn)− er∆TS1
0 S2

1(ωn)− er∆TS2
0 · · · Sm

1 (ωn)− er∆TSm
0

 ,
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we see that if yTA 	 0 does not have a solution (the market is arbitrage free) then

we must be able to find x > 0 ∈ Rn so that Ax = 0. You can easily see that this means

we can find a probability vector Q (by normalizing x) so that for all j = 1, · · · ,m∑
i

qi(S
j(ωi)− er∆TSj

0) = 0.

But then Q is exactly the risk neutral measure. Conversely, if a risk neutral

measure exists, then the system Ax = 0 has a positive solution. Thus we cannot

solve the system yTA 	 0. That is there is no arbitrage opportunity in the market.

Remark 3.9. In Theorem (3.6), we did not include the American option in the port-

folio. The reason is the discounted value of an American option is a super-martingale

in general and the direction of the discounted portfolio value is unclear, as explained

in Remark (3.4). However, one should also expect that the inclusion of American op-

tions should not affect the arbitrage property of the market. This is indeed the case, if

the option holder acts in an optimal way. The description of this situation is slightly

more complicated, so we reserve a separate section to discuss it.

3.5 Hedging portfolio as a pricing tool

Theorem (3.6) already states the pricing we must follow for any financial derivative

if we want our market to be arbitrage free, whether or not we can find a replicating

portfolio for the derivatives. We learned in Lecture 2b that we can also price a

financial derivative by the replicating portfolio, if it exists. These two methods should

be consistent, that is they should give the same price. The following Lemma confirms

this is the case.

Lemma 3.10. Let a market have m risky assets S1, S2, · · · , Sm. If a risk neutral

measure Q exists, that is

Si
k = EQ(e−r∆TSi

k+1|FS
k ), i = 1, · · · ,m.

Consider a financial derivative V , whose replicating portfolio exists. That is at

any time 0 ≤ k ≤ N , we can find ∆i
k shares of asset Si and yk dollars in cash such

that

πk =
∑
i

∆i
kS

i
k + yk = Vk,
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and the self-financing condition is satisfied:

πk+1 =
∑
i

∆i
kS

i
k+1 + er∆T (πk −

∑
i

∆i
kS

i
k).

Then Vk = EQ(e−r∆T (N−k)VN |FS
k ),∀k.

Proof. By Lemma (3.5), e−rk∆Tπk is a martingale. Therefore

Vk = πk = EQ(e−r(N−k)∆TπN |FS
k ) = EQ(e−r(N−k)∆TVN |FS

k ).

4 The second fundamental theorem of asset pric-

ing

Theorem 4.1. Let a market have m risky assets S1, S2, · · · , Sm. If a risk neutral

measure Q exists, that is

Si
k = EQ(e−r∆TSi

k+1|FS
k ), i = 1, · · · ,m.

and it is unique, then every financial derivative that pays VN at time N can be

replicated and the market is arbitrage-free.

We will first prove this theorem for the caseN = 1 and then for generalN . Because

we’re in a discrete space, there are n possible outcomes, ω1, ω2, · · · , ωn at time N = 1.

The replicating condition requires that we are able to find ∆i, i = 1, · · · ,m and y

such that

m∑
i=1

∆iSi
1(ωj) + yer∆T = V1(ωj), j = 1, · · · , n.

Note that the above is a system of n equations in m+1 variables. The unique mar-

tingale measure condition says that there exists a unique positive solution q1, q2, · · · , qn
to the system of equations

n∑
i=1

qie
−r∆TSj

1(ωi) = Sj
0, j = 1, · · · ,m∑

i

qi = 1.
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Note that the above is a system of m + 1 equations in n variables (the variables

are the qi). The LHS matrix in the first system is
S1

1(ω1) S2
1(ω1) · · · Sm

1 (ω1) erT

S1
1(ω2) S2

1(ω2) · · · Sm
1 (ω2) erT

· · ·
S1

1(ωn) S2
1(ωn) · · · Sm

1 (ωn) erT

 .
It is equivalent to

A =


e−r∆TS1

1(ω1) e−r∆TS2
1(ω1) · · · e−r∆TSm

1 (ω1) 1

e−r∆TS1
1(ω2) e−r∆TS2

1(ω2) · · · e−r∆TSm
1 (ω2) 1

· · ·
e−r∆TS1

1(ωn) e−r∆TS2
1(ωn) · · · e−r∆TSm

1 (ωn) 1

 ,
as far as existence of solution is concerned.

The LHS matrix in the second system is

B =


e−r∆TS1

1(ω1) e−r∆TS1
1(ω2) · · · e−r∆TS1

1(ωn)

e−r∆TS2
1(ω1) e−r∆TS2

1(ω2) · · · e−r∆TS2
1(ωn)

· · ·
e−r∆TSm

1 (ω1) e−r∆TSm
1 (ω2) · · · e−r∆TSm

1 (ωn)

1 1 · · · 1

 .

Note that A = BT . Thus what we need to prove is the following Lemma

Lemma 4.2. Let A be a m× n matrix. Suppose that there exists a vector b ∈ Rm

such that the equation Ax = b has a unique solution. Then for any vector c ∈ Rn,

the equation ATx = c has a solution.

This is a well-known result in linear algebra. We provide the proof for complete-

ness.

Proof. If the equation Ax = b has a unique solution then the equation Ax = 0 has

a unique solution (and vice versa). The equation Ax = 0 has a unique solution if and

only if the columns of A are linearly independent. But the columns of A are the rows

of AT . Thus the matrix AT has full row rank. Thus for any vector c, the equation

ATx = c has a solution.

Remark 4.3. The fact that the system Bq = S0 has a positive solution was not used

in the Lemma. In fact it is not needed. We have seen this in the example of market
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that is complete but not arbitrage free. The condition for qi > 0 is used to assert

that the market is arbitrage free, and provide a link between pricing using expectation

under the risk neutral measure and using the replicating portfolio, as described in

Lemma (3.10).
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