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1 Introduction

What information do we need to completely characterize a RV? For a discrete RV we

need its ditribution mass function, for a continuous RV we need its density. These

are not the only ways. An alternative piece of information we can use is the Laplace

transform of the distribution mass function or the density fuction. In the probabilistic

context, we call it the moment generating function. Because the Laplace transform

has an inverse, knowing the moment generating function is the same as knowing the

RV. As you will see, in certain situations, it is more convenient to have information

about the moment generating function, rather than the density function itself.

2 Definition

The moment generating function of a RV X is defined as

M(t) = E(etX)

=
∑
i

etiP (X = i) if X is discrete

=

∫ ∞
−∞

etxfX(x)dx if X is continuous.

Note that M(t) may NOT be defined for all values of t (the value may be ∞). A

simple example is for the exponential RV (λ) with t > λ:

E(etX) =

∫ ∞
0

etxλe−λx

=

∫ ∞
0

λe(t−λ)xdx =∞.
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3 Properties

3.1 Moment generating

Under certain condition, we can obtain the moments of the RV from the moment

generating function, as followed:

E(Xn) = M (n)(0).

The reasoning is intuitively as followed:

d

dt
M(t) =

d

dt
E(etX) = E(

d

dt
etX) = E(XetX).

Thus

d

dt
M(t)|t=0 = E(X)/

The condition that would make this computation valid is so that we can switch

the order of summation (or integration) with differentiation with respect to t.

3.2 Unique determination of distribution

Let X and Y be 2 RVs with moment generating functions MX(t) and MY (t). (Tech-

nically we only require them to exist and be finite for some region around t = 0). If

MX(t) = MY (t) then X and Y have the same distribution.

For example, later on we will compute the moment generating function of a

N(µ, σ2) to be M(t) = eµt+
σ2t2

2 . So if we have a RV Y such that its moment generating

function is MY (t) = e
t2

2 then we know Y must have standard Normal distribution.

3.3 Moment generating function of sum of independent RVs

Let X, Y be independent. Then

MX+Y (t) = E(et(X+Y )) = E(etXetY ) = E(etX)E(etY ) = MX(t)MY (t).

This gives us a very elegant way to compute the moment generating function of

the sum, knowing the moment generating function of the individual summand. For

example, again assuming we know MX(t) = eµt+
σ2t2

2 for X having Normal(µ, σ2)

distribution. Let Xi, i = 1, 2 have Normal(µi, σ
2
i ). Then

MX1+X2 = eµ1t+
σ21t

2

2 eµ2t+
σ22t

2

2 = e(µ1+µ2)t+
(σ21+σ

2
2)t

2

2 .

That is, X1 +X2 have Normal (µ1 + µ2, σ
2
1 + σ2

2) distribution, as we learned before.
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4 Moment generating functions of specific RVs

Here we just list the moment generating functions of various RVs we dealt with so

far in this course. The derivation of these moment generating functions can be found

in the textbook.

4.1 Discrete

4.1.1 Binomial(n,p)

MX(t) = (pet + 1− p)n.

Remark: From the formula, it is clear that the sum of 2 independent Bin(n,p) and

Bin(m,p) has distribution Bin(n+m,p).

4.1.2 Possion(λ)

MX(t) = eλ(e
t−1).

Remark: From the formula, it is clear that the sum of 2 independent Poisson λ1

and λ2 has distribution Poisson(λ1 + λ2).

4.1.3 Geometric p

MX(t) =
pet

1− (1− p)et
.

Remark: From the formula, it is clear that the sum of 2 independent Geometric

p is NOT a geometric p since the product would be

MX+Y (t) =

(
pet

1− (1− p)et

)2

.

It follows from the next result that it is a negative Binomial 2, p.

4.1.4 Negative Binomial r, p

MX(t) =

(
pet

1− (1− p)et

)r
.

Remark: From the formula, it is clear that the sum of 2 independent Negative

Binomial r1, p and r2, p is a Negative Binomial r1 + r2, p.
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4.2 Continuous

4.2.1 Uniform [a, b]

MX(t) =
etb − eta

t(b− a)
.

Remark: From the formula, it is clear that the sum of 2 independent X, Y having

Uniform [a, b] distribution doest NOT have Uniform distribution since

MX+Y (t) =

(
etb − eta

t(b− a)

)2

.

4.2.2 Exponential λ

MX(t) =
λ

λ− t
.

Remark: From the formula, it is clear that the sum of 2 independent X, Y having

Exponential(λ) distribution is NOT an Exponential since

MX+Y (t) =

(
λ

λ− t

)2

.

It is a Gamma distribution as the next result will show.

4.2.3 Gamma α, λ

MX(t) =

(
λ

λ− t

)α
.

Remark: From the formula, it is clear that the sum of 2 independent X, Y having

Gamma(α1, λ) and Gamma(α2, λ) distribution has a Gamma (α1+α2, λ) distribution.

4.2.4 Normal µ, σ2

MX(t) = eµt+
σ2t2

2 .

Remark: From the formula, it is clear that the sum of 2 independent X, Y having

Normal(µ1, σ
2
1) and Normal(µ2, σ

2
2) distribution is a Normal (µ1 + µ2, σ

2
1 + σ2

2).
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