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1 Introduction

Let X1, X2 have joint density fX1X2(x1, x2). Let g1, g2 : R2 → R be 2 functions.

Denote Yi = gi(X1, X2). Intuitively, Y1, Y2 would be jointly continuous with some

density function fY1Y2(y1, y2) We want to find what this density fY1Y2 is. Our experi-

ence with functions of a single RV before tells us that there should be some condition

on g1, g2, more specifically something along the line of invertibility. Otherwise, given

y1, y2 it is complicated to solve for x1, x2 such that yi = gi(x1, x2) and it’s hard to give

a general formula for fY1Y2 in such situation. More specifically, assume gi satisfies the

following:

1. The function gi is jointly invertible: For any pair y1, y2, there exists a unique

pair x1, x2 such that yi = gi(x1, x2). Note: This does NOT require that each gi is

INDIVIDUALLY invertible. For example, let

g1(x1, x2) = x1 + x2

g2(x1, x2) = x1 − x2,

then they are jointly, but not individually invertible.

2. The determinant of the Jacobian matrix of the mapping g(x1, x2) =

[
g1(x1, x2)

g2(x1, x2)

]
is non-zero for all x1, x2. Simply put, we require:

J(x1, x2) :=
∂g1
x1

∂g2
x2
− ∂g1

x2

∂g2
x1
6= 0.

Then we have the following result

Theorem 1.1. X1, X2 have joint density fX1X2(x1, x2). Let g1, g2 satisfy the condi-

tions 1,2 above. Let Yi = gi(X1, X2), i = 1, 2. Denote g−1(y1, y2) as the pair of x1, x2
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such that yi = gi(x1, x2). Then Y1, Y2 are jointly continuous and their joint density is

given as

fY1Y2(y1, y2) =
fX1X2(g

−1(y1, y2))∣∣J(g−1(y1, y2)
)∣∣ .

2 Examples and applications

Example 2.1. Sum and difference of RVs

If we let

g1(x1, x2) = x1 + x2

g2(x1, x2) = x1 − x2,

then it is clear that J(x1, x2) = −2 for all x1, x2. Also

g−1(y1, y2) = (
y1 + y2

2
,
y1 − y2

2
).

Therefore,

fY1Y2 =
1

2
fX1X2(

y1 + y2
2

,
y1 − y2

2
).

Example 2.2. Sum and difference of independent Uniform

Let X1, X2 have joint independent Uniform[0,1] distribution. Then from the ex-

ample above, we have

fY1Y2 =
1

2
if 0 ≤ y1 + y2

2
≤ 1 and 0 ≤ y1 − y2

2
≤ 1;

= 0 otherwise.

This region is a square with vertices at (0, 0), (1, 1), (2, 0), (1,−1). Thus we can

compute the marginal density of y1 easily as:

fY1(y1) =
1

2
2y1 = y1, 0 ≤ y1 ≤ 1

fY1(y1) =
1

2
2(2− y1) = 2− y1, 1 ≤ y1 ≤ 2.

From a similar technique one can also derive the marginal distribution of Y2, that

is the difference of 2 independent Uniforms.
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Example 2.3. Sum and difference of independent Normal

Let X1, X2 have joint independent standard Normal distribution. Then from the

example above, we have

fY1Y2 =
1

4π
e−

(y1+y2)
2

8
− (y1−y2)

2

8

=
1

4π
e−

y21
4 e−

y22
4 .

Thus we see that not only INDIVIDUALLY, the sum and difference of standard Nor-

mals are Normally distributed with mean 0 and Variance 2, but they are jointly IN-

DEPDENDENT as well.

Example 2.4. Sum and difference of independent Exponential

Let X1, X2 have joint independent Exponential distribution with rate λ1, λ2, re-

spectively. Then from the example above, we have

fY1Y2 =
λ1λ2

2
e−λ1(

y1+y2
2 )−λ2( y1−y2

2 ) if y1 + y2 ≥ 0, y1 − y2 ≥ 0

= 0 otherwise.
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