Joint distribution of Functions of RVs

Math 477

November 26, 2014

1 Introduction

Let X_{1}, X_{2} have joint density $f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)$. Let $g_{1}, g_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be 2 functions. Denote $Y_{i}=g_{i}\left(X_{1}, X_{2}\right)$. Intuitively, Y_{1}, Y_{2} would be jointly continuous with some density function $f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right)$ We want to find what this density $f_{Y_{1} Y_{2}}$ is. Our experience with functions of a single RV before tells us that there should be some condition on g_{1}, g_{2}, more specifically something along the line of invertibility. Otherwise, given y_{1}, y_{2} it is complicated to solve for x_{1}, x_{2} such that $y_{i}=g_{i}\left(x_{1}, x_{2}\right)$ and it's hard to give a general formula for $f_{Y_{1} Y_{2}}$ in such situation. More specifically, assume g_{i} satisfies the following:

1. The function g_{i} is jointly invertible: For any pair y_{1}, y_{2}, there exists a unique pair x_{1}, x_{2} such that $y_{i}=g_{i}\left(x_{1}, x_{2}\right)$. Note: This does NOT require that each g_{i} is INDIVIDUALLY invertible. For example, let

$$
\begin{aligned}
& g_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \\
& g_{2}\left(x_{1}, x_{2}\right)=x_{1}-x_{2},
\end{aligned}
$$

then they are jointly, but not individually invertible.
2. The determinant of the Jacobian matrix of the mapping $g\left(x_{1}, x_{2}\right)=\left[\begin{array}{l}g_{1}\left(x_{1}, x_{2}\right) \\ g_{2}\left(x_{1}, x_{2}\right)\end{array}\right]$ is non-zero for all x_{1}, x_{2}. Simply put, we require:

$$
J\left(x_{1}, x_{2}\right):=\frac{\partial g_{1}}{x_{1}} \frac{\partial g_{2}}{x_{2}}-\frac{\partial g_{1}}{x_{2}} \frac{\partial g_{2}}{x_{1}} \neq 0 .
$$

Then we have the following result
Theorem 1.1. X_{1}, X_{2} have joint density $f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)$. Let g_{1}, g_{2} satisfy the conditions 1,2 above. Let $Y_{i}=g_{i}\left(X_{1}, X_{2}\right), i=1,2$. Denote $g^{-1}\left(y_{1}, y_{2}\right)$ as the pair of x_{1}, x_{2}
such that $y_{i}=g_{i}\left(x_{1}, x_{2}\right)$. Then Y_{1}, Y_{2} are jointly continuous and their joint density is given as

$$
f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right)=\frac{f_{X_{1} X_{2}}\left(g^{-1}\left(y_{1}, y_{2}\right)\right)}{\left|J\left(g^{-1}\left(y_{1}, y_{2}\right)\right)\right|}
$$

2 Examples and applications

Example 2.1. Sum and difference of RVs
If we let

$$
\begin{aligned}
& g_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \\
& g_{2}\left(x_{1}, x_{2}\right)=x_{1}-x_{2},
\end{aligned}
$$

then it is clear that $J\left(x_{1}, x_{2}\right)=-2$ for all x_{1}, x_{2}. Also

$$
g^{-1}\left(y_{1}, y_{2}\right)=\left(\frac{y_{1}+y_{2}}{2}, \frac{y_{1}-y_{2}}{2}\right) .
$$

Therefore,

$$
f_{Y_{1} Y_{2}}=\frac{1}{2} f_{X_{1} X_{2}}\left(\frac{y_{1}+y_{2}}{2}, \frac{y_{1}-y_{2}}{2}\right) .
$$

Example 2.2. Sum and difference of independent Uniform
Let X_{1}, X_{2} have joint independent Uniform[0,1] distribution. Then from the example above, we have

$$
\begin{aligned}
f_{Y_{1} Y_{2}} & =\frac{1}{2} \text { if } 0 \leq \frac{y_{1}+y_{2}}{2} \leq 1 \text { and } 0 \leq \frac{y_{1}-y_{2}}{2} \leq 1 \\
& =0 \text { otherwise. }
\end{aligned}
$$

This region is a square with vertices at $(0,0),(1,1),(2,0),(1,-1)$. Thus we can compute the marginal density of y_{1} easily as:

$$
\begin{aligned}
& f_{Y_{1}}\left(y_{1}\right)=\frac{1}{2} 2 y_{1}=y_{1}, 0 \leq y_{1} \leq 1 \\
& f_{Y_{1}}\left(y_{1}\right)=\frac{1}{2} 2\left(2-y_{1}\right)=2-y_{1}, 1 \leq y_{1} \leq 2
\end{aligned}
$$

From a similar technique one can also derive the marginal distribution of Y_{2}, that is the difference of 2 independent Uniforms.

Example 2.3. Sum and difference of independent Normal
Let X_{1}, X_{2} have joint independent standard Normal distribution. Then from the example above, we have

$$
\begin{aligned}
f_{Y_{1} Y_{2}} & =\frac{1}{4 \pi} e^{-\frac{\left(y_{1}+y_{2}\right)^{2}}{8}-\frac{\left(y_{1}-y_{2}\right)^{2}}{8}} \\
& =\frac{1}{4 \pi} e^{-\frac{y_{1}^{2}}{4}} e^{-\frac{y_{2}^{2}}{4}} .
\end{aligned}
$$

Thus we see that not only INDIVIDUALLY, the sum and difference of standard Normals are Normally distributed with mean 0 and Variance 2, but they are jointly INDEPDENDENT as well.

Example 2.4. Sum and difference of independent Exponential
Let X_{1}, X_{2} have joint independent Exponential distribution with rate λ_{1}, λ_{2}, respectively. Then from the example above, we have

$$
\begin{aligned}
f_{Y_{1} Y_{2}} & =\frac{\lambda_{1} \lambda_{2}}{2} e^{-\lambda_{1}\left(\frac{y_{1}+y_{2}}{2}\right)-\lambda_{2}\left(\frac{y_{1}-y_{2}}{2}\right)} \text { if } y_{1}+y_{2} \geq 0, y_{1}-y_{2} \geq 0 \\
& =0 \text { otherwise. }
\end{aligned}
$$

