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1 Expectation

1.1 The general results

Proposition 1.1. If X, Y have a joint probability mass function p(x, y) then

E(g(X, Y )) =
∑
x,y

g(x, y)P (X = x, Y = y).

If X, Y have a joint density function f(x, y) then

E(g(X, Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dxdy.

Corollary 1.2. Let X, Y be either two discrete or continuous RVs. Then

E(X + Y ) = E(X) + E(Y ).

By induction,

E(
n∑
i=1

Xi) =
n∑
i=1

E(Xi).

1.2 Examples

Example 1.3. Accident location X is uniformly distributed on a road of length L.

At the time of the accident, the ambulence location is also independently uniformly

distributed on the same road. What is the expected distance between the ambulence

and the accident?
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Ans:

E(|X − Y |) =

∫ L

0

∫ L

0

1

L2
|x− y|dxdy

= L/3.

Example 1.4. Sample mean

Let X1, · · · , Xn be identically distributed. Let X :=
∑

iXi

n
. Compute E(X).

Ans:

E(X) =

∑
iE(Xi)

n
= E(X1).

Example 1.5. Mean of a hypergeometric

n balls are selected without replacement from an urn with N balls, m of which are

white. Find the expectation of the number of white balls in the sample.

Ans: Let Xi, i = 1, · · · , n be RVs such that

Xi = 1, if ith ball is white

= 0, otherwise.

Then X =
∑n

i=1Xi represents number of white balls in the sample. Thus

E(X) =
n∑
i=1

E(Xi) = nP ( ith ball is white ) =
nm

N
.

Example 1.6. Hat selecting problem

N people select their hats from a pile of N hats. Find the expected number of

people selecting their own hat.

Ans: Let Xi, i = 1, · · · , N be RVs such that

Xi = 1, if ith person selects his own hat

= 0, otherwise.

Then X =
∑N

i=1Xi represents number of people selecting their own hat. Thus

E(X) =
N∑
i=1

E(Xi) = NP ( ith ball is white ) =
N

N
= 1.
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Example 1.7. Coupon selecting problem

Suppose there are N types of coupons, each time one collects, any type is equally

likely. Find the expected number of coupons one needs to collect before having a

complete set of each type.

Ans: Let Xi, i = 0, 1, N − 1 be the number of additional coupons that need to

be obtained after the i distinct types have been collected in order to obtain another

distinct type. Then the total number of coupons required is

X =
N−1∑
i=0

Xi.

Each Xi has a Geometric(pi) distribution with

pi =
N − i
N

.

Therefore E(Xi) = 1
pi

= N
N−i . Thus E(X) =

∑N−1
i=0

N
N−i .

Example 1.8. Duck shooting problem

Ten hunters are shooting at the ducks, each choosing his target at random. Suppose

each also independently hits his target with probability p, and there are 10 ducks. Find

the expected number of ducks that escape unhurt.

Let Xi, i = 1, · · · , N be RVs such that

Xi = 1, if ith duck escapes unhurt

= 0, otherwise.

Then X =
∑N

i=1Xi represents number of ducks escaped unhurt.

Let us compute the probability of the ith duck being hurt. Let Eij be the event

that the ith duck got hit by the jth hunter. Also let Fij be the event that the jth

hunter locks on the ith duck. Then

P (Eij) = P (Eij|Fij)P (Fij) =
p

10
.

( Note that this problem is unlike the hat-selection problem in that two hunters

can hit the same duck. Thus if we let Ei be the event that the ith duck got hurt,

even though this is still true :

P (Ei) =
10∑
i=1

P (Ei|Fij)P (Fij),
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we do NOT have P (Ei|Fij) = p since even if the jth hunter locks on the ith duck, it

can get hurt by other hunters as well. )

By assumption, Ei1, Ei2, · · · , Ei10 are independent. Thus

P (Ec
ij) = (1− p

10
)10.

Thus E(X) = 10(1− p
10

)10.

Example 1.9. The inclusion exclusion principle

Let E1, E2, · · · , En be events and Xi be random variables such that

Xi = 1, if Ei occurs

= 0, otherwise.

Let X = 1−
∏n

i=1(1−Xi). Then

X = 1, if at least one of Ei occurs

= 0, non of Ei occurs.

Then E(X) = P (∪ni=1Ei). On the other hand, note that

1−
n∏
i=1

(1−Xi) =
n∑
i=1

Xi −
∑
i<j

XiXj + · · ·+ (−1)n+1X1 · · ·Xn.

From this we derive the inclusion exclusion formula.

2 Covariance and Variance

2.1 General results

Definition 2.1. The covariance between X, Y , denoted as Cov(X, Y ) is defined as

Cov(X, Y ) = E[(X − EX)(Y − EY )] = E(XY )− E(X)E(Y ).

Remark, by the following proposition:

Proposition 2.2. If X, Y are independent then E(g(X)h(Y )) = E(g(X))E(h(Y )),

we have that if X, Y are independent then Cov(X, Y ) = 0.

However, note that Cov(X, Y ) = 0 does NOT imply that X, Y are independent,

as the following example shows.

Example 2.3. Let X = −1, 0, 1 with probability 1/3 each. Let Y = 0 if X 6= 0 and

1 if X = 0. Then E(XY ) = E(X) = 0. Thus Cov(X, Y ) = 0. But clearly X, Y are

NOT independent.
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2.2 Some properties

Proposition 2.4. We have:

1. Cov(X, Y ) = Cov(Y,X);

2. Cov(aX, bY ) = abCov(X, Y );

3. Cov(
∑

iXi,
∑

j Yj) =
∑

i,j Cov(Xi, Yj);

4. Cov(X,X) = Var(X).

5. If X, Y are independent, Cov(X, Y ) = 0.

From properties 3 and 5, we have the following result about the variance of sum

of independent RVs:

Proposition 2.5. If X1, X2, · · · , Xn are independent then

Var(
∑
i

Xi) =
∑
i

Var(Xi).

2.3 Examples

Example 2.6. Variance of sample mean and sample variance

Let X1, · · · , Xn be independent and identically distributed. Let X :=
∑

iXi

n
. Com-

pute Var(X). Also denote

S2 =
n∑
i=1

(Xi −X)2

n− 1
.

Compute E(S2).

Ans:

Var(X) =
1

n2

∑
i

Var(Xi) =
Var(X1)

n
.

E(S2) =
1

n− 1
E

n∑
i=1

(Xi −X)2

=
1

n− 1
E

n∑
i=1

(X2
i − 2XXi +X

2
)

=
1

n− 1
E(

n∑
i=1

X2
i − 2nX

2
+ nX

2
)

=
1

n− 1
E(

n∑
i=1

X2
i − nX

2
)
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Denoting E(Xi) = µ and Var(Xi) = σ2 we see that E(X2
i ) = µ2+σ2 and E(X

2
) =

σ2

n
+ µ2. Thus

E(S2) =
1

n− 1
[n(σ2 + µ2)− n(

σ2

n
+ µ2)] = σ2 = Var(X1).

We denote ρ(X, Y ) := Cov(X,Y )

Var(X)Var(Y )
as the correlation between X, Y . It is a num-

ber between [−1, 1] where −1 denote perfect negative correlation, 0 non-correlation

and 1 perfect positive correlation.

Example 2.7. Correlation and conditional probability

Let A,B be 2 events and IA, IB RVs such that

IA(IB) = 1 if A (B) occurs

= 0 otherwise.

Then E(IA) = P (A), E(IB) = P (B), E(IAIB) = P (AB). Thus

Cov(IA, IB) = P (AB)− P (A)P (B) = P (B)(P (A|B)− P (A)).

Thus we see that A,B are positively correlated if event B happenning makes it

more likely for A to happen, negatively correlated if B happenning makes it less likely

for A to happen, and not correlated if B happening does not influence A.

Example 2.8. Zero-correlation between sample deviation and sample mean

Let X1, · · · , Xn be independent and identically distributed. Show that

Cov(Xi −X,X) = 0.

Ans:

Cov(Xi −X,X) = Cov(Xi, X)− Var(X)

=
1

n

∑
j

Cov(Xi, Xj)−
σ2

n

=
σ2

n
− σ2

n
= 0.

Remark: It follows from this computation that

Cov(

∑
iXi −X
n− 1

, X) = 0.
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However, we CANNOT conclude that Cov(S2, X) = 0 from the above, because∑
i(Xi −X)2

n− 1
,

and we cannot “pass the square inside the sum.”

There is a special case worth noticing. That is, when X, Y have joint Normal

distribution (see next lecture for the definition), then X, Y are independent if and

only if Cov(X, Y ) = 0. Thus, if X,Xi−X have joint Normal distribution (which is the

case if, e.g., Xi are i.i.d. Normals) then it follows from the above computation that

X,Xi−X are also independent. Then we CAN conclude that S2, X are independent

because X, Y independent implies X2, Y independent.

7


