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1 Sums of continuous RVs

1.1 Introduction

We want to obtain a density for the random variable Z = X + Y , where X, Y are

independent continuous RVs with densities fX , fY respectively.

1.2 The general formula

We have

FX+Y (z) = P (X + Y ≤ z)

=

∫∫
x+y≤z

fXY (x, y)dxdy

=

∫ ∞
−∞

∫ z−y

−∞
fX(x)fY (y)dxdy

=

∫ ∞
−∞

fY (y)

∫ z−y

−∞
fX(x)dxdy

=

∫ ∞
−∞

FX(z − y)fY (y)dy.

Therefore

fZ(z) =
d

dz

∫ ∞
−∞

FX(z − y)fY (y)dy

=

∫ ∞
−∞

fX(z − y)fY (y)dy. (1)

We say fZ(z) is the convolution of fX , fY . Note that we also have

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx.
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1.3 Examples

1.3.1 Sum of Uniforms

Example 1.1. Let X and Y be independent Uniform[0,1] RVs. Find the density of

Z = X + Y .

Ans: Before we even attempt the solution, you should note that Z is takes values

in the range [0, 2]. Applying the above formula gives

fZ(z) =

∫ ∞
−∞

fX(z − y)fY (y)dy

=

∫ 1

0

10≤z−y≤1fY (y)dy.

We utilize the fact that 0 ≤ z ≤ 2 here. The inequality 0 ≤ z− y ≤ 1 implies that

z − 1 ≤ y ≤ z.

So we need to compare z−1 with 0 and z with 1, as those are the lower and upper

limits of our original integral.

If 0 ≤ z ≤ 1 then

fZ(z) =

∫ z

0

1dy = z.

If 1 ≤ z ≤ 2 then

fZ(z) =

∫ 1

z−1
1dy = 1− (z − 1) = 2− z.

In summary, the sum of 2 indendent Uniforms [0,1] has density

fZ(z) = z; 0 ≤ z ≤ 1

= 2− z; 1 ≤ z ≤ 2.

1.3.2 Sum of Gammas

Proposition 1.2. Let X, Y be independent Gamma with parameters (α, λ) and (β, λ),

respectively. Then X + Y has distribution Gamma (α + β, λ).

Proof. Recall that the density of Gamma(α, λ) is

fX(x) =
λe−λx(λx)α−1

Γ(α)
, x ≥ 0.
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Thus by the formula (1)

fZ(z) =
1

Γ(α)Γ(β)

∫ ∞
−∞

λe−λ(z−y)(λ(z − y))α−1λe−λy(λy)β−1dy.

The requirement that x = z − y ≥ 0 reduces the above integral to

fZ(z) = Ke−λz
∫ z

0

(z − y)α−1yβ−1dy,

where we absorb all constants related to α, β, λ into K. The reason is only the form

of the density is important. The constant has to work out right for the integral of

the density to be 1, since we know a priori that fZ(z) is a density.

Now ∫ z

0

(z − y)α−1yβ−1dy = zα−1
∫ z

0

(1− y

z
)α−1yβ−1dy

= zα+β−1
∫ 1

0

(1− u)α−1uβ−1du,

by the substitution u = y
z
, du = 1

z
dy. Since

∫ 1

0
(1 − u)α−1uβ−1du is just another

constant, it can be absorbed into K to give us

fZ(z) = Ke−λzzα+β−1,

which is the right form for a Gamma (α + β, λ). The proof is finished.

Corollary 1.3. Let X1, X2, · · · , Xn be independent Exponential (λ). Then Y = X1 +

X2 + · · ·+Xn has Gamma (n, λ) distribution.

Proof. Since Exponential(λ) = Gamma (1, λ), by the above Proposition, we have

X1 + X2 has distribution Gamma (2, λ). But X1 + X2 are independent of X3, thus

X1 + X2 + X3 has distribution Gamma (3, λ). Continue in this fashion we have the

result.

1.3.3 Sum of Normals

Proposition 1.4. Let Xi be independent Normal with parameters (µi, σ
2
i ), i = 1, 2

respectively. Then X + Y has distribution Normal (µ1 + µ2, σ
2
1 + σ2

2).

Proof. Since we have showed that Xi−µi have Normal(0, σ2
i ) distribution, WLOG

we can assume µ1 = µ2 = 0. By a similar reasoning, we can assume σ2 = 1.
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Now since only form matters but not constants, we have

fX(z − y)fY (y) = Ke−
(z−y)2

2σ2 e−
y2

2 .

Completing the square we have

(z − y)2 + σ2y2 = (1 + σ2)y2 − 2zy + z2

=
(√

1 + σ2y − z√
1 + σ2

)2
+ (1− 1

1 + σ2
)z2

= (1 + σ2)
(
y − z

1 + σ2

)2
+

σ2

1 + σ2
z2.

Therefore,

fX(z − y)fY (y) = Ke
− 1+σ2

2σ2

(
y− z

1+σ2

)2

e
− z2

2(1+σ2) .

Integrating the above in y just leaves us with

fZ(z) = Ke
− z2

2(1+σ2
)
.

This is the form of a Normal(0, 1 + σ2). The proof is complete.

Corollary 1.5. Let X1, X2, · · · , Xn be independent Normal (µi, σ
2
i ). Then Y = X1 +

X2 + · · ·+Xn has Normal (
∑

i µi,
∑

i σ
2
i ) distribution.

1.3.4 The Chi-square distribution

Definition 1.6. Let Y = Z2, where Z has standard normal distribtion. Then we say

Y has the Chi-square distribution with 1 degree of freedom.

Let Y1, Y2, · · · , Yn be independent Chi-square distribution with one degree of free-

dom. Then we say Y =
∑n

i=1 Yi has the Chi-square distribution with n degrees of

freedom.

We have:

P (Y ≤ y) = P (−√y ≤ Z ≤ √y) = 2P (0 ≤ Z ≤ √y).

Therefore,

fY (y) =
1
√
y
fZ(
√
y) =

y1/2−1e−y/2√
2π

.

That is, a Chi-square RV with one degree of freedom is just a Gamma(1/2,1/2)

RV. From our result for summing independent Gamma RVs, a Chi-square RV with n

degrees of freedom is just a Gamma(n/2,1/2) RV.
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2 Sums of discrete RVs

2.1 The formula

Let X, Y be independent discrete RVs. Let Z = X + Y . Then

P (Z = k) = P (X + Y = k) =
∑

i,j:i+j=k

P (X = i, Y = j)

=
∑

i,j:i+j=k

P (X = i)P (Y = j)

=
∑
i

P (X = i)P (Y = k − i)

=
∑
j

P (X = k − j)P (Y = j).

2.2 Sum of Poissons

Proposition 2.1. Let Xi be independent Poisson with parameters λi, i = 1, 2 respec-

tively. Then X + Y has distribution Poisson λ1 + λ2.

Proof. Let Z = X + Y . Note that Z takes values 0, 1, 2 · · · . Then

P (Z = k) =
∑
i

P (X = i)P (Y = k − i)

=
∑
i

e−λ1
λi1
i!
e−λ2

λk−i2

k − i!

=
e−(λ1+λ2)

k!

k∑
i=0

(
k

i

)
λi1λ

k−i
2

=
e−(λ1+λ2)

k!
(λ1 + λ2)

k

k∑
i=0

((
k

i

)
λ1

λ1 + λ2

)i(
λ2

λ1 + λ2

)k−i
=

e−(λ1+λ2)

k!
(λ1 + λ2)

k.

Corollary 2.2. Let X1, X2, · · · , Xn be independent Poisson λi. Then Y = X1 +X2 +

· · ·+Xn has Poisson
∑

i λi distribution.

2.3 Sum of Binomials

Proposition 2.3. Let Xi be independent Binomial with parameters νi, i = 1, 2 respec-

tively and success probability p . Then X + Y has distribution Binomial (ν1 + ν2, p).
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Proof. Let Z = X + Y . Note that Z takes values 0, 1, 2 · · · , n1 + n2. Then

P (Z = k) =
∑
i

P (X = i)P (Y = k − i)

=
k∑
i=0

(
n1

i

)
pi(1− p)n1−i

(
n2

k − i

)
pk−i(1− p)n2−(k−i)

= pk(1− p)n1+n2−k
k∑
i=0

(
n1

i

)(
n2

k − i

)
.

We claim that
k∑
i=0

(
n1

i

)(
n2

k − i

)
=

(
n1 + n2

k

)
,

via the following argument: to pick k objects out of n1 + n2 total, we just have to

pick i objects out of the first n1, k − i objects out of n2, where i = 0, 1, · · · , k.

2.4 Sum of Negative Binomial

Proposition 2.4. Let Xi be independent Negative Binomial with parameters ri, i =

1, 2 respectively and success probability p . Then X + Y has distribution Negative

Binomial (r1 + r2, p).

Proof. Let Z = X +Y . Note that Z takes values r1 + r2, r1 + r2 + 1, r1 + r2 + 2 · · · .
Then for k ≥ r1 + r2

P (Z = k) =
∑
i

P (X = i)P (Y = k − i)

=

k−r2∑
i=r1

(
i− 1

r1 − 1

)
pr1(1− p)i−r1

(
k − i− 1

r2 − 1

)
pr2(1− p)k−i−r2

= pr1+r2(1− p)k−(r1+r2)
k−r2∑
i=r1

(
i− 1

r1 − 1

)(
k − i− 1

r2 − 1

)
= pr1+r2(1− p)k−(r1+r2)

(
k − 1

r1 + r2 − 1

)
,

where we explain the combinatorics identity as followed:
(

k−1
r1+r2−1

)
is the number

of ways we can write a sum of r1 + r2 positive integer summands, adding up to k.

But that is equivalent to considering the number of ways we can write the first r1

summands adding up to i and the last r2 summands adding up to k − i, where i can

be r1 up to k − r2 (since the least the last r2 summand can sum up to be is r2).
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