Sum of independent continuous RVs

Math 477
November 14, 2014

1 Sums of continuous RVs

1.1 Introduction

We want to obtain a density for the random variable $Z=X+Y$, where X, Y are independent continuous RVs with densities f_{X}, f_{Y} respectively.

1.2 The general formula

We have

$$
\begin{aligned}
F_{X+Y}(z) & =P(X+Y \leq z) \\
& =\iint_{x+y \leq z} f_{X Y}(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{z-y} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} f_{Y}(y) \int_{-\infty}^{z-y} f_{X}(x) d x d y \\
& =\int_{-\infty}^{\infty} F_{X}(z-y) f_{Y}(y) d y
\end{aligned}
$$

Therefore

$$
\begin{align*}
f_{Z}(z) & =\frac{d}{d z} \int_{-\infty}^{\infty} F_{X}(z-y) f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} f_{X}(z-y) f_{Y}(y) d y \tag{1}
\end{align*}
$$

We say $f_{Z}(z)$ is the convolution of f_{X}, f_{Y}. Note that we also have

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x
$$

1.3 Examples

1.3.1 Sum of Uniforms

Example 1.1. Let X and Y be independent Uniform $[0,1] R V$ s. Find the density of $Z=X+Y$.

Ans: Before we even attempt the solution, you should note that Z is takes values in the range $[0,2]$. Applying the above formula gives

$$
\begin{aligned}
f_{Z}(z) & =\int_{-\infty}^{\infty} f_{X}(z-y) f_{Y}(y) d y \\
& =\int_{0}^{1} \mathbf{1}_{0 \leq z-y \leq 1} f_{Y}(y) d y
\end{aligned}
$$

We utilize the fact that $0 \leq z \leq 2$ here. The inequality $0 \leq z-y \leq 1$ implies that

$$
z-1 \leq y \leq z
$$

So we need to compare $z-1$ with 0 and z with 1 , as those are the lower and upper limits of our original integral.

If $0 \leq z \leq 1$ then

$$
f_{Z}(z)=\int_{0}^{z} 1 d y=z
$$

If $1 \leq z \leq 2$ then

$$
f_{Z}(z)=\int_{z-1}^{1} 1 d y=1-(z-1)=2-z
$$

In summary, the sum of 2 indendent Uniforms [0,1] has density

$$
\begin{aligned}
f_{Z}(z) & =z ; 0 \leq z \leq 1 \\
& =2-z ; 1 \leq z \leq 2
\end{aligned}
$$

1.3.2 Sum of Gammas

Proposition 1.2. Let X, Y be independent Gamma with parameters (α, λ) and (β, λ), respectively. Then $X+Y$ has distribution Gamma $(\alpha+\beta, \lambda)$.

Proof. Recall that the density of $\operatorname{Gamma}(\alpha, \lambda)$ is

$$
f_{X}(x)=\frac{\lambda e^{-\lambda x}(\lambda x)^{\alpha-1}}{\Gamma(\alpha)}, x \geq 0 .
$$

Thus by the formula (1)

$$
f_{Z}(z)=\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{-\infty}^{\infty} \lambda e^{-\lambda(z-y)}(\lambda(z-y))^{\alpha-1} \lambda e^{-\lambda y}(\lambda y)^{\beta-1} d y
$$

The requirement that $x=z-y \geq 0$ reduces the above integral to

$$
f_{Z}(z)=K e^{-\lambda z} \int_{0}^{z}(z-y)^{\alpha-1} y^{\beta-1} d y
$$

where we absorb all constants related to α, β, λ into K. The reason is only the form of the density is important. The constant has to work out right for the integral of the density to be 1 , since we know a priori that $f_{Z}(z)$ is a density.

Now

$$
\begin{aligned}
\int_{0}^{z}(z-y)^{\alpha-1} y^{\beta-1} d y & =z^{\alpha-1} \int_{0}^{z}\left(1-\frac{y}{z}\right)^{\alpha-1} y^{\beta-1} d y \\
& =z^{\alpha+\beta-1} \int_{0}^{1}(1-u)^{\alpha-1} u^{\beta-1} d u
\end{aligned}
$$

by the substitution $u=\frac{y}{z}, d u=\frac{1}{z} d y$. Since $\int_{0}^{1}(1-u)^{\alpha-1} u^{\beta-1} d u$ is just another constant, it can be absorbed into K to give us

$$
f_{Z}(z)=K e^{-\lambda z} z^{\alpha+\beta-1}
$$

which is the right form for a Gamma $(\alpha+\beta, \lambda)$. The proof is finished.
Corollary 1.3. Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent Exponential (λ). Then $Y=X_{1}+$ $X_{2}+\cdots+X_{n}$ has Gamma (n, λ) distribution.

Proof. Since Exponential $(\lambda)=\operatorname{Gamma}(1, \lambda)$, by the above Proposition, we have $X_{1}+X_{2}$ has distribution Gamma $(2, \lambda)$. But $X_{1}+X_{2}$ are independent of X_{3}, thus $X_{1}+X_{2}+X_{3}$ has distribution Gamma (3, λ). Continue in this fashion we have the result.

1.3.3 Sum of Normals

Proposition 1.4. Let X_{i} be independent Normal with parameters $\left(\mu_{i}, \sigma_{i}^{2}\right), i=1,2$ respectively. Then $X+Y$ has distribution Normal $\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.

Proof. Since we have showed that $X_{i}-\mu_{i}$ have $\operatorname{Normal}\left(0, \sigma_{i}^{2}\right)$ distribution, WLOG we can assume $\mu_{1}=\mu_{2}=0$. By a similar reasoning, we can assume $\sigma_{2}=1$.

Now since only form matters but not constants, we have

$$
f_{X}(z-y) f_{Y}(y)=K e^{-\frac{(z-y)^{2}}{2 \sigma^{2}}} e^{-\frac{y^{2}}{2}}
$$

Completing the square we have

$$
\begin{aligned}
(z-y)^{2}+\sigma^{2} y^{2} & =\left(1+\sigma^{2}\right) y^{2}-2 z y+z^{2} \\
& =\left(\sqrt{1+\sigma^{2}} y-\frac{z}{\sqrt{1+\sigma^{2}}}\right)^{2}+\left(1-\frac{1}{1+\sigma^{2}}\right) z^{2} \\
& =\left(1+\sigma^{2}\right)\left(y-\frac{z}{1+\sigma^{2}}\right)^{2}+\frac{\sigma^{2}}{1+\sigma^{2}} z^{2}
\end{aligned}
$$

Therefore,

$$
f_{X}(z-y) f_{Y}(y)=K e^{-\frac{1+\sigma^{2}}{2 \sigma^{2}}\left(y-\frac{z}{1+\sigma^{2}}\right)^{2}} e^{-\frac{z^{2}}{2\left(1+\sigma^{2}\right)}}
$$

Integrating the above in y just leaves us with

$$
f_{Z}(z)=K e^{-\frac{z^{2}}{2\left(1+\sigma^{2}\right)}}
$$

This is the form of a $\operatorname{Normal}\left(0,1+\sigma^{2}\right)$. The proof is complete.
Corollary 1.5. Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent $\operatorname{Normal}\left(\mu_{i}, \sigma_{i}^{2}\right)$. Then $Y=X_{1}+$ $X_{2}+\cdots+X_{n}$ has Normal $\left(\sum_{i} \mu_{i}, \sum_{i} \sigma_{i}^{2}\right)$ distribution.

1.3.4 The Chi-square distribution

Definition 1.6. Let $Y=Z^{2}$, where Z has standard normal distribtion. Then we say Y has the Chi-square distribution with 1 degree of freedom.

Let $Y_{1}, Y_{2}, \cdots, Y_{n}$ be independent Chi-square distribution with one degree of freedom. Then we say $Y=\sum_{i=1}^{n} Y_{i}$ has the Chi-square distribution with n degrees of freedom.

We have:

$$
P(Y \leq y)=P(-\sqrt{y} \leq Z \leq \sqrt{y})=2 P(0 \leq Z \leq \sqrt{y})
$$

Therefore,

$$
f_{Y}(y)=\frac{1}{\sqrt{y}} f_{Z}(\sqrt{y})=\frac{y^{1 / 2-1} e^{-y / 2}}{\sqrt{2 \pi}}
$$

That is, a Chi-square RV with one degree of freedom is just a $\operatorname{Gamma}(1 / 2,1 / 2)$ RV. From our result for summing independent Gamma RVs, a Chi-square RV with n degrees of freedom is just a Gamma(n/2,1/2) RV.

2 Sums of discrete RVs

2.1 The formula

Let X, Y be independent discrete RVs. Let $Z=X+Y$. Then

$$
\begin{aligned}
P(Z=k)=P(X+Y=k) & =\sum_{i, j: i+j=k} P(X=i, Y=j) \\
& =\sum_{i, j: i+j=k} P(X=i) P(Y=j) \\
& =\sum_{i} P(X=i) P(Y=k-i) \\
& =\sum_{j} P(X=k-j) P(Y=j) .
\end{aligned}
$$

2.2 Sum of Poissons

Proposition 2.1. Let X_{i} be independent Poisson with parameters $\lambda_{i}, i=1,2$ respectively. Then $X+Y$ has distribution Poisson $\lambda_{1}+\lambda_{2}$.

Proof. Let $Z=X+Y$. Note that Z takes values $0,1,2 \cdots$. Then

$$
\begin{aligned}
P(Z=k) & =\sum_{i} P(X=i) P(Y=k-i) \\
& =\sum_{i} e^{-\lambda_{1}} \frac{\lambda_{1}^{i}}{i!} e^{-\lambda_{2}} \frac{\lambda_{2}^{k-i}}{k-i!} \\
& =\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{k!} \sum_{i=0}^{k}\binom{k}{i} \lambda_{1}^{i} \lambda_{2}^{k-i} \\
& =\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{k!}\left(\lambda_{1}+\lambda_{2}\right)^{k} \sum_{i=0}^{k}\left(\binom{k}{i} \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{i}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{k-i} \\
& =\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}}{k!}\left(\lambda_{1}+\lambda_{2}\right)^{k} .
\end{aligned}
$$

Corollary 2.2. Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent Poisson λ_{i}. Then $Y=X_{1}+X_{2}+$ $\cdots+X_{n}$ has Poisson $\sum_{i} \lambda_{i}$ distribution.

2.3 Sum of Binomials

Proposition 2.3. Let X_{i} be independent Binomial with parameters $\nu_{i}, i=1,2$ respectively and success probability p. Then $X+Y$ has distribution Binomial $\left(\nu_{1}+\nu_{2}, p\right)$.

Proof. Let $Z=X+Y$. Note that Z takes values $0,1,2 \cdots, n_{1}+n_{2}$. Then

$$
\begin{aligned}
P(Z=k) & =\sum_{i} P(X=i) P(Y=k-i) \\
& =\sum_{i=0}^{k}\binom{n_{1}}{i} p^{i}(1-p)^{n_{1}-i}\binom{n_{2}}{k-i} p^{k-i}(1-p)^{n_{2}-(k-i)} \\
& =p^{k}(1-p)^{n_{1}+n_{2}-k} \sum_{i=0}^{k}\binom{n_{1}}{i}\binom{n_{2}}{k-i} .
\end{aligned}
$$

We claim that

$$
\sum_{i=0}^{k}\binom{n_{1}}{i}\binom{n_{2}}{k-i}=\binom{n_{1}+n_{2}}{k}
$$

via the following argument: to pick k objects out of $n_{1}+n_{2}$ total, we just have to pick i objects out of the first $n_{1}, k-i$ objects out of n_{2}, where $i=0,1, \cdots, k$.

2.4 Sum of Negative Binomial

Proposition 2.4. Let X_{i} be independent Negative Binomial with parameters $r_{i}, i=$ 1,2 respectively and success probability p. Then $X+Y$ has distribution Negative Binomial $\left(r_{1}+r_{2}, p\right)$.

Proof. Let $Z=X+Y$. Note that Z takes values $r_{1}+r_{2}, r_{1}+r_{2}+1, r_{1}+r_{2}+2 \cdots$. Then for $k \geq r_{1}+r_{2}$

$$
\begin{aligned}
P(Z=k) & =\sum_{i} P(X=i) P(Y=k-i) \\
& =\sum_{i=r_{1}}^{k-r_{2}}\binom{i-1}{r_{1}-1} p^{r_{1}}(1-p)^{i-r_{1}}\binom{k-i-1}{r_{2}-1} p^{r_{2}}(1-p)^{k-i-r_{2}} \\
& =p^{r_{1}+r_{2}}(1-p)^{k-\left(r_{1}+r_{2}\right)} \sum_{i=r_{1}}^{k-r_{2}}\binom{i-1}{r_{1}-1}\binom{k-i-1}{r_{2}-1} \\
& =p^{r_{1}+r_{2}}(1-p)^{k-\left(r_{1}+r_{2}\right)}\binom{k-1}{r_{1}+r_{2}-1}
\end{aligned}
$$

where we explain the combinatorics identity as followed: $\binom{k-1}{r_{1}+r_{2}-1}$ is the number of ways we can write a sum of $r_{1}+r_{2}$ positive integer summands, adding up to k. But that is equivalent to considering the number of ways we can write the first r_{1} summands adding up to i and the last r_{2} summands adding up to $k-i$, where i can be r_{1} up to $k-r_{2}$ (since the least the last r_{2} summand can sum up to be is r_{2}).

