Joint distribution

Math 477

November 3, 2014

1 Discrete RVs

1.1 Joint distribution

Let X, Y be random variables. To have all the information about X, Y we need to know $P(X=i, Y=j)$ for all possible i, j in the range of X, Y. However, it may NOT be that X, Y are independent. In other words, knowing $P(X=i)$ and $P(Y=j)$ is not enough to determine $P(X=i, Y=j)$. In this case, we need to list all possible pari of $P(X=i, Y=j)$ in a 2 dimensional table. This is the so-called joint distribution of X and Y.

Example 1.1. Suppose 3 balls are randomly selected from an urn containing 3 red, 4 white and 5 blue. Let X and Y denote, respectively, the number of red and white balls in the sample. Find $P(X=i, Y=j)$ for all possible (i, j).

Ans: It's best to present these informations in a table. We'll just list the answers here.

$$
\begin{aligned}
& p(0,0)=\frac{\binom{5}{3}}{\binom{12}{3}} ; p(0,1)=\frac{\binom{4}{1}\binom{5}{2}}{\binom{12}{3}} ; p(0,2)=\frac{\binom{4}{2}\binom{5}{1}}{\binom{12}{3}} ; p(0,3)=\frac{\binom{4}{3}}{\binom{12}{3}} \\
& p(1,0)=\frac{\binom{3}{1}\binom{5}{2}}{\binom{12}{3}} ; p(1,1)=\frac{\binom{3}{1}\binom{4}{1}\binom{5}{1}}{\binom{12}{3}} ; p(1,2)=\frac{\binom{3}{1}\binom{4}{2}}{\binom{12}{3}} \\
& p(2,0)=\frac{\binom{3}{2}}{\binom{5}{1}} ; p(2,1)=\frac{\binom{3}{2}\binom{4}{1}}{\binom{12}{3}} \\
& p(3,0)=\frac{\binom{3}{3}}{\binom{12}{3}}
\end{aligned}
$$

For a joint distribution, one should check that

$$
\sum_{i, j} P(X=i, Y=j)=1
$$

Note that the above is a double sum over i, j.

1.2 Marginal distribution

Intuitively, one can recover the information about X from knowing both about X, Y. This can be done, via the following:

$$
P(X=i)=\operatorname{sum}_{j} P(X=i, Y=j)
$$

since

$$
\{X=i\}=\cup_{j}\{X=i, Y=j\} .
$$

Similarly, we have

$$
P(Y=j)=\operatorname{sum}_{i} P(X=i, Y=j)
$$

The distribution $P(X=i)$ is referred to as the marginal distribution of X. The distribution $P(Y=j)$ is referred to as the marginal distribution of Y.

2 Continuous random variables

2.1 Joint density

Taking the motivation from the definition of a continuous RV, we say two RVs X and Y are jointly continuous if there exists a function $f(x, y)$ such that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \geq 0
$$

We refer to $f(x, y)$ as the joint density of X, Y. Then we define

$$
P\left(x_{1} \leq X \leq x_{2}, y_{1} \leq Y \leq y_{2}\right)=\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} f(x, y) d x d y
$$

From which it follows that

$$
P(X=x, Y=y)=0
$$

and thus

$$
\begin{aligned}
P\left(x_{1} \leq X \leq x_{2}, y_{1} \leq Y \leq y_{2}\right) & =P\left(x_{1}<X \leq x_{2}, y_{1} \leq Y \leq y_{2}\right) \\
& =P\left(x_{1}<X<x_{2}, y_{1} \leq Y \leq y_{2}\right) \\
& =P\left(x_{1} \leq X \leq x_{2}, y_{1}<Y \leq y_{2}\right) \\
& =P\left(x_{1} \leq X \leq x_{2}, y_{1} \leq Y<y_{2}\right) \cdots
\end{aligned}
$$

as well as

$$
P(X \leq x, Y \leq y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) d u d v .
$$

The function $F(x, y)=P(X \leq x, Y \leq y)$ is referred to as the joint cumulative distribution function of X and Y. If X, Y are continuous, then F is jointly differentiable in x, y and

$$
f(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y)
$$

Example 2.1. (Uniform on a unit square)
Let X, Y have a joint density

$$
\begin{aligned}
f(x, y) & =1,0 \leq x \leq 1,0 \leq y \leq 1 \\
& =0 \text { othersiwe. }
\end{aligned}
$$

Then for $0 \leq x \leq 1,0 \leq y \leq 1$,

$$
F(x, y)=\int_{0}^{x} \int_{0}^{y} d x d y=x y
$$

Note that $F(x, y)$ is a constant in x for $x \geq 1$ since for $x \geq 1$ and $0 \leq y \leq 1$

$$
F(x, y)=\int_{0}^{1} \int_{0}^{y} d x d y=y,
$$

agreeing with the fact that

$$
f(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y)=0 \text { for } x \geq 1 .
$$

Similarly $F(x, y)$ is a constant in y for $x \geq 1$. And finally for $0 \leq x, y \leq 1$

$$
\frac{\partial^{2}}{\partial x \partial y} F(x, y)=\frac{\partial^{2}}{\partial x \partial y} x y=1=f(x, y) .
$$

2.2 Marginal distribution, marginal density

Again, we have information about X, Y. How can we find information about X given this information? First, note that

$$
P(X \leq x)=P(X \leq x, Y<\infty)=\lim _{y \rightarrow \infty} F(x, y)
$$

since the set $\{Y<\infty\}$ has probability 1 .
That is

$$
\begin{aligned}
P(X \leq x) & =\int_{-\infty}^{x} \int_{-\infty}^{\infty} f(u, v) d u d v \\
& =\int_{-\infty}^{x} \int_{-\infty}^{\infty} f(u, v) d v d u
\end{aligned}
$$

For a fix u, note that

$$
\int_{-\infty}^{\infty} f(u, v) d v
$$

is a function of u. Therefore, differetiating with respect to x on both sides gives

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, v) d v
$$

We call $f_{X}(x)$ the marginal density of X and $F_{X}(x)=P(X \leq x)$ the marginal cdf of X. Similarly we have

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f(u, y) d u
$$

and the cumulative distribution function of Y is

$$
P(Y \leq y)=\int_{-\infty}^{y} f_{Y}(u) d u=\int_{-\infty}^{\infty} f(u, v) d u d v
$$

3 Independence

We say, generally that $2 \mathrm{RVs} X, Y$ are independent if for any subsets A, B of the real line:

$$
P(X \in A, Y \in B)=P(X \in A) P(Y \in B)
$$

In the case that X, Y are either jointly discrete or jointly continuous, we can say more.

3.1 Discrete RV

Let X, Y be discrete RVs with joint distribution $P(X=i, Y=j)$. Then X, Y are independent if and only if

$$
P(X=i, Y=j)=P(X=i) P(Y=j) .
$$

Proof.

$$
\begin{aligned}
P(X \in A, Y \in B) & =\sum_{x \in A} \sum_{y \in B} P(X=x, Y=y) \\
& =\sum_{x \in A} \sum_{y \in B} P(X=x) P(Y=y)=\sum_{x \in A} P(X=x) \sum_{y \in B} P(Y=y) \\
& =P(X \in A) P(Y \in B) .
\end{aligned}
$$

Example 3.1. Suppose that $n+m$ independent trials having a common probability success p are performed. If X is the number of successes in the first n trials, Y the number of successes in m trials, then X and Y are independent. However, let Z be the number of total successes. Then X and Z are NOT independent.

3.2 Continuous RV

Let X, Y be discrete RVs with joint density $f_{X Y}(x, y)$. Then X, Y are independent if and only if

$$
f_{X Y}(x, y)=f_{X}(x) f_{Y}(y) .
$$

Proof.

$$
\begin{aligned}
P(X \in A, Y \in B) & =\int_{A} \int_{B} f_{X Y}(x, y) d x d y \\
& =\int_{A} \int_{B} f_{X}(x) f_{Y}(y) d x d y=\int_{A} f_{X}(x) \int_{B} f_{Y}(y) \\
& =P(X \in A) P(Y \in B) .
\end{aligned}
$$

Example 3.2. Two persons decide to meet at a certain location. If each of them independently arrives at a time uniformly distributed between 12-1 pm, find the probability that the first to arrive has to wait longer than 10 minutes.

Ans: Let X, Y denote the time the first and the second person arrives. Then X, Y are independent Uniform $(0,60)$. We want to compute

$$
P(X+10<Y)+P(Y+10<X)=2 P(X+10<Y),
$$

by symmetry. We have

$$
\begin{aligned}
2 P(X+10<Y) & =2 \iint_{x+10<y} f(x, y) d x d y \\
& =2 \int_{10}^{60} \int_{0}^{y-10}(1 / 60)^{2} d x d y \\
& =\frac{2}{60^{2}} \int_{10}^{60}(y-10) d y \\
& =25 / 36
\end{aligned}
$$

Example 3.3. If the join density function of X and Y is

$$
\begin{aligned}
f(x, y) & =6 e^{-2 x} e-3 y, 0<x<\infty, 0<y<\infty, \\
& =0 \text { otherwise }
\end{aligned}
$$

are they independent? What if

$$
\begin{aligned}
f(x, y) & =24 x y, 0<x, y<1,0<x+y<1 \\
& =0 \text { otherwise }
\end{aligned}
$$

Ans: The RVs are independent in the first case and not in the second. The reason is if we denote

$$
\begin{aligned}
\mathbf{1}(x, y) & =1 \text { if } 0<x, y<1,0<x+y<1 \\
& =0 \text { otherwise }
\end{aligned}
$$

then we see that for the second case

$$
f(x, y)=24 x \mathbf{1}(x, y),
$$

and clearly the function $\mathbf{1}(x, y)$ does not factor.

