Functions of continuous RV

Math 477
October 28, 2014

1 Monotone function of a continuous RV

Theorem 1.1. Let X be a continuous $R V$ with pdf $f_{X}(x)$. Suppose $g(x)$ is a strictly monotonic and differentiable function of x. Then $Y=g(X)$ is a continuous $R V$ with density

$$
\begin{aligned}
f_{Y}(y) & =f_{X}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right| \text { if } y=g(x) \text { for some } x \\
& =0 \text { otherwise. }
\end{aligned}
$$

Proof.
Suppose g is increasing

$$
P(Y \leq y)=P(g(X) \leq y)=P\left(X \leq g^{-1}(y)\right)=F_{X}\left(g^{-1}(y)\right) .
$$

Differentiating yields

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) \frac{d}{d y} g^{-1}(y) .
$$

The case when g is decreasing can be proved similarly.

1.1 Examples

Example 1.2. Let X be a continuous non-negative $R V$ with density function f and let $Y=X^{n}$. Then

$$
f_{Y}(y)=\frac{1}{n} y^{1 / n-1} f_{X}\left(y^{1 / n}\right) .
$$

Example 1.3. The log normal distribution Let X be a Normal $\left(\mu, \sigma^{2}\right)$ distribution. Then $Y=e^{X}$ is saidto have a lognormal distribution with parameters μ, σ^{2}. Y has density

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}} y} e^{-\frac{(\log (y)-\mu)^{2}}{2 \sigma^{2}}} .
$$

2 Non-monotone function of continuous RV

Example 2.1. Let X have Uniform $[-1,1]$ distribution. What is the pdf of $Y=X^{2}$?
Ans: For $0 \leq y \leq 1$

$$
P(Y \leq y)=P\left(X^{2} \leq y\right)=P(-\sqrt{y} \leq X \leq \sqrt{y})=\sqrt{y} .
$$

Therefore, $f_{Y}(y)=\frac{1}{2 \sqrt{y}}$.
Remark: The function $g(x)=x^{2}$ is NOT monotone on $[-1,1]$. However, noting that for $x<0$, the inverse of x^{2} would be $-\sqrt{x}$ and

$$
|d / d x(-\sqrt{x})|=|d / d x \sqrt{x}|=\frac{1}{2 \sqrt{x}},
$$

we can try to apply the Theorem (1.1) to see what happens. Specifically, we would have

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right|=\frac{1}{2} \frac{d}{d y} \sqrt{y}=\frac{1}{4 \sqrt{y}},
$$

and this is incorrect.
Note that we can try to correct the situation by saying since there are "two" inverse functions of x^{2} on the two intervals $[-1,0]$ and $[0,1]$ we should add over these to get

$$
f_{Y}(y)=\frac{1}{4 \sqrt{y}}+\frac{1}{4 \sqrt{y}}=\frac{1}{2 \sqrt{y}},
$$

which now agrees with our previous result. But note how this is a not straightforward argument.

The above correction may rely on the fact that f_{X} is symmetric over 0 . Let's try a non-symmetric example

Example 2.2. Let X have Uniform $[-2,1]$ distribution. What is the pdf of $Y=X^{2}$?

Ans: We need to distinguish between $1 \leq y \leq 4$ and $0 \leq y \leq 1$. For $0 \leq y \leq 1$

$$
P(Y \leq y)=P\left(X^{2} \leq y\right)=P(-\sqrt{y} \leq X \leq \sqrt{y})=\frac{2 \sqrt{y}}{3}
$$

For $1 \leq y \leq 4$

$$
P(Y \leq y)=P\left(X^{2} \leq y\right)=P(-\sqrt{y} \leq X \leq 1)=\frac{1+\sqrt{y}}{3}
$$

Thus we see that the pdf is

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{3 \sqrt{y}}, 0 \leq y<1 \\
& =\frac{1}{6 \sqrt{y}}, 1 \leq y \leq 4
\end{aligned}
$$

Again, one can apply the theorem (1.1) with care. On the interval [-2,-1], there is "one" inverse function for $g(x)=x^{2}$ and on the interval $[-1,1]$ there are "two" inverse functions for $g(x)=x^{2}$. Thus we need to add for those values of y that have the inverse in the interval $[-1,1]$, namely $0 \leq y \leq 1$ giving

$$
f_{Y}(y)=\frac{1}{3} \frac{1}{2 \sqrt{y}}+\frac{1}{3} \frac{1}{2 \sqrt{y}}=\frac{1}{3 \sqrt{y}}
$$

And for those values of y that have inverse in the interval $[-2,-1]$, namely $2 \leq$ $y \leq 4$, we do not have to add, giving

$$
f_{Y}(y)=\frac{1}{3} \frac{1}{2 \sqrt{y}}=\frac{1}{6 \sqrt{y}} .
$$

Let's look at a last example where the inverses are different over different intervals Example 2.3. Let X have Uniform $[-1,1]$ distribution. Define

$$
\begin{aligned}
g(x) & =x^{2}, 0 \leq x \leq 1 \\
& =x^{4},-1 \leq x<0
\end{aligned}
$$

What is the pdf of $Y=g(X)$?
Ans: For $0 \leq y \leq 1$

$$
P(Y \leq y)=P\left(-y^{1 / 4} \leq X \leq \sqrt{y}\right)=\frac{\sqrt{y}+y^{1 / 4}}{2}
$$

Thus,

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{4 \sqrt{y}}+\frac{1}{8 y^{3 / 4}}, 0 \leq y \leq 1 \\
& =0 \text { otherwise }
\end{aligned}
$$

Again, note that $g(x)$ have "two" inverses, depending on $x \in[-1,0]$ or $x \in[0,1]$. Therefore, we need to add over these. Thus applying Theorem (1.1) gives

$$
f_{Y}(y)=\frac{1}{2}\left|d / d y-y^{1 / 4}\right|+\frac{1}{2}|d / d y \sqrt{y}|=\frac{1}{4 \sqrt{y}}+\frac{1}{8 y^{3 / 4}},
$$

agreeing with our previous result.

3 Translating and scaling of continuous RV

A particular function of interest for us, which is always monotonic is $f(x)=\frac{x-a}{b}$. You should verify the following results:

1. If X has a Uniform $[\mathrm{a}, \mathrm{b}]$ distribution then $Y=\frac{X-\mu}{\sigma}$ has Uniform $\left[\frac{a-\mu}{\sigma}, \frac{b-\mu}{\sigma}\right]$ distribution.
2. If X has $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution then $Y=\frac{X-a}{b}$ has $\operatorname{Normal}\left(\mu-a,\left(\frac{\sigma}{b}\right)^{2}\right)$ distribution.
3. If X has Exponential (λ) distribution. Then $Y=\frac{X}{\sigma}$ have Exponential $\left(\frac{\lambda}{\sigma}\right)$ distribution.
4. If X has Exponential (λ) distribution. Then $Y=\frac{X-\mu}{\sigma}$ does NOT have Exponential distribution, simply because the support of Y no longer is $[0, \infty)$. However, you can still say that X has some "exponential type" distribution with support on $[-\mu, \infty)$ and you can work out its density.
