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1 Monotone function of a continuous RV

Theorem 1.1. Let X be a continuous RV with pdf fx(x). Suppose g(x) is a strictly
monotonic and differentiable function of x. Then'Y = g(X) is a continuous RV with

density

) = fx(g'(y) 'di;g_l(y)‘ if y = g(x) for some x

= 0 otherwise.

Proof.

Suppose g is increasing.
P(Y <y)=P(g(X) <y) = P(X < g7 '(y) = Fx(g~"(v)).

Differentiating yields

The case when g is decreasing can be proved similarly.

1.1 Examples

Example 1.2. Let X be a continuous non-negative RV with density function f and
let Y = X". Then

Fely) = 9" ().



Example 1.3. The log normal distribution Let X be a Normal(u,c?) distribution.
Then'Y = ¥ is saidto have a lognormal distribution with parameters u,o?. Y has

density

1 _ (log(y);u)Q
= —— 20
Ty (y) /—27m2y €

2 Non-monotone function of continuous RV

Example 2.1. Let X have Uniform [—1,1] distribution. What is the pdf of Y = X?2?

Ans: For0 <y <1

P(Y <y)=P(X*<y)=P(—vy < X <y = /.

Therefore, fy(y) = ﬁﬂ

Remark: The function g(z) = 2* is NOT monotone on [—1, 1]. However, noting
that for z < 0, the inverse of 2 would be —/r and

2

(d/da(—v/)| = |d/dz/3] = %

we can try to apply the Theorem (1.1) to see what happens. Specifically, we would

have

1d 1

) = Fxla™ ) | o0 )| = 35V = 1

and this is incorrect.
Note that we can try to correct the situation by saying since there are “two”
inverse functions of 22 on the two intervals [—1, 0] and [0, 1] we should add over these

to get
1 n 1
4y 4y 2\/§7

which now agrees with our previous result. But note how this is a not straightforward

fy(y)

argument.
The above correction may rely on the fact that fx is symmetric over 0. Let’s try

a non-symmetric example

Example 2.2. Let X have Uniform [—2,1] distribution. What is the pdf of Y = X?%?

2



Ans: We need to distinguish between 1 <y <4and 0 <y <1. For0 <y <1

PV <y)= P(X* <y) = P(—yF < X < yj) = 22,

For1 <y <4

1
PY<y)=PX’<y)=P(-/y<X<1)= VY
Thus we see that the pdf is

<1

fr(y) = %,0 <y

1
= —, 1<y <4
6/y
Again, one can apply the theorem (1.1) with care. On the interval [-2,-1], there is
“one” inverse function for g(x) = ? and on the interval [-1,1] there are “two” inverse
functions for g(x) = z%. Thus we need to add for those values of y that have the

inverse in the interval [-1,1], namely 0 <y < 1 giving
11 1 1 1

Friy) = 325 3205 33

And for those values of y that have inverse in the interval [—2, —1], namely 2 <

y < 4, we do not have to add, giving
111
32y 6y

Let’s look at a last example where the inverses are different over different intervals

fY(y)

Example 2.3. Let X have Uniform [—1,1] distribution. Define

glz) = 22,0<z<1

What is the pdf of Y = g(X)?

Ans: For0 <y <1



Thus,

1 1
fy(y) = —‘f'wﬁﬁyﬁl

ING

= 0 otherwise .

Again, note that g(z) have “two” inverses, depending on = € [—1,0] or z € [0, 1].
Therefore, we need to add over these. Thus applying Theorem (1.1) gives

1

fr(y) = |d/dy g+ 5l d/dy /) = \/— + 5

agreeing with our previous result.

3 Translating and scaling of continuous RV

A particular function of interest for us, which is always monotonic is f(z) = *3*. You
should verify the following results:
1. If X has a Uniform [a,b] distribution then Y = 2= has Uniform [“#, ©£]

g

distribution.

2. If X has Normal(y,o?) distribution then ¥ = %=
distribution.

3. If X has Exponential(\) distribution. Then Y = £ have Exponential(2)
distribution.

4. If X has Exponential(\) distribution. Then Y = % does NOT have Expo-

nential distribution, simply because the support of Y no longer is [0, 00). However,

(:u - a (%)2)

you can still say that X has some “exponential type” distribution with support on

[—p, 00) and you can work out its density.



