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1 The Uniform

Definition 1.1. X is said to have a Uniform [a,b] distribution if X has the pdf

1
fx(z) = b_a,agxgb

= 0 otherwise.

If X has Uniform [a,b] distribution then

Therefore

b +ab+a? a+b\> (b—a)?
Var(X):T—( 5 ) =1

2 The Exponential
Definition 2.1. X is said to have a Fxponential X distribution if X has the pdf

fx(z) = XM 0<uz

= 0 otherwise.
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If X has Exp()) distribution then
o 1
E(X) = / Ave Mdr = —,
0 A

by integration by parts.

o 2
B(X?) = / \ole M dy = 2
0

again by integration by parts.
Thus
Var(X) = %—% = %
Example 2.2. Buses arrive at the Hill center stop at 15-minute intervals, starting
at 7 am. If a student arrives at the stop uniformly between 7 - 7:30 am. What is the
probability that he waits
a. Less than 5 minutes for a bus?

b. More than 10 minutes for a bus?

Ans:

a. This is equivalent to him arriving in the interval [7:10 - 7:15], [7:25-7:30]. Thus
the probability is 10/30 = 1/3.

b. This is equivalent to him arriving in the interval [7:00 - 7:05], [7:15-7:20]. Thus
the probability is also 10/30 = 1/3.

2.1 The memoryless property of the Exponential

Example 2.3. Suppose the number of miles that a car can run befores its battery
wears out is exponentially distributed with an average of 10 k miles. John’s car has
covered 4 k miles since the last battery change. He plans to take another 5k mile
trip. What s the probability that he will be able to complete the trip without having
to replace the battery?

Ans: Let X be the life time of the battery in thousand of miles. Then X has
Exponential(1/10) distribution. We want to compute P(X > 9|X > 4). Then

P(X >9) [ et dy

P(X >9|X >4) = =
B 6_9/10 _ s/0
T e—4/10 )



Observe that the above answer is exactly as if we computed
1
P(X >5) = / — e wPdy = e /10,
5 10
In fact, you can see that this is a general property of the Exponential(\): for ¢ > s
P(X >t X >s)=P(X >t—ys).

We refer to this as the memoryless property. The interpretation is that the ma-
chine or whatever instrument that has its lifetime distributed as an exponential RV
does not “remember” that it has survived an interval of length s; if we want to com-
pute its chance of survival beyond an interval of length ¢, given that it has survived
an interval of length s.

The following converse is also true: If X is a continuous random variable such that

X satisfies the memoryless property then X must have an Exponential distribution.

2.2 Exponential RV as model for waiting time of Poisson
event arrival

The Exponential RV also arises as model for the inter-arrival time of events that has

arrival distribution according to a Poisson process:

Example 2.4. Earth quake occurs in California with rate 2 per week.
a. What is the probability that there will be no earth quake during the next month?
b. Let T be the number of weeks until the next earthquake (T is a continuous
random variable). What is the distribution of T'?

Ans: a. The number earth quake within next month is Possion (8). Thus

b. If T > t it means that there is no earthquake within ¢ weeks. That is P(T >
t) = e 2. We also have P(T <t) =1—¢ M.

3 The Normal RV

Definition 3.1. X is said to have a Normal( p,o?) distribution if X has the pdf

1 (z—)?
fx(x) = e 207 ,—00 < & < 0.

vV 2mo?




If X has Normal( u,0?) distribution then

> 1 _e-w?
E(X)z/oox\/we 202 dx = [,

by substitution.

e 1 (z—)?
E(X?) = / z? e 20?2 dr = p? + o’
—oo  V2mo?

by integration by parts and substitution.
Thus

Var(X) = p* + o* — u* = o°.

3.1 The cumulative distribution of a Normal

Observe that for a Normal(u, 0?)

x 1 w—11)2
P(XSQ;):/ \/We(wé) du

does not have an explicit formula. One can still approximate this value by numerical
method, which gives rise to the Normal table. The quantity P(X < z) is the c.d.f.
of X, of course, and we denote it by ®(z).

We observe the following properties of ®:

a. &(x) =1 — ®(—=z). Thus one only needs to give ®(z) for = > 0.

b. ®(0) =1/2.

Note: Some normal table does not give ®(z) however. They give P(0 < X < z)
for z > 0 or ®(x) — 1/2. One should check the normal table to see what value they

give before using it.

3.2 The Normal approximation to the Binomial
Theorem 3.2. DeMoivre - Laplace Let X be a Binomial(n,p). Then for n large:

Pla< -2 <)~ o) — d(a).

np(l—p) ~



3.3 The continuity correction

The above Theorem allow us to compute, for X having Binomial (n,p) distribution

P(a < X <b), where a,b are real numbers. More specifically:

= ay/np(l—p)+np
= by/np(1—p)+np.

But since X is a discrete random variables, it only takes integer values. Thus

S RN

we most often start out with expression of the form P(m < X < n) where m,n are
integers. Because the point mass probability P(X = m) and P(X = n) are included
in the expression P(m < X < n), we do not want to miss it in the transformation
into the form P(a < X < b). Thus we choose & = m — 1/2 and b = n 4 1/2. This is

called the continuity correction.

4 The Gamma distribution

Definition 4.1. X is said to have a Gamma( a, \) distribution if X has the pdf

e (Aot
fx(z) = T,xzo

= 0 otherwise .

Where I'(«), the gamma function, is defined as
['a) = / e Yy dy.
0

4.1 Properties of the Gamma function

By integration by parts, we have
a. NNa)=(a—1)I'(a—1).
b. T'(1) = 1.

From which it follows that I'(n) = (n — 1)! for n a positive integer.

4.2 Gamma distribution as model for waiting time for n

events

Suppose events arrive according to a Poisson process distribution. Then the amount

of time one has to wait until a total of n events has occured will be a Gamma(n, \)
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distribution. More specifically, let T}, be the time that the nth event occurs. Then
o e—At()\t)k
P(T, <t)=P(N(t)>n) =) —
Differentiating yields:

Z e M) SR e M (A)E
o = G - Y

e M)t
(n—1)! °

4.3 Gamma as sum of the Exponentials

We see that if & = n then the Gamma(n, \) random variable represents the arrival
time of the nth event with arrival rate A\. This suggests that if we have X, X5, -+ | X,
independent Exponential(A) then X7+ X5+ - - X, has distributon Gamma(n, \). This
turns out to be correct, and we’ll show the proof in Chapter 6 when we cover the sum
of independent RVs.

The importance of the above interpretation is that if Y has Gamma(n, \) then we
can deduce

E(Y) = Y B(X)=%

n
Var(Y) = ZVar(XZ-) =
What about the case when Y has Gamma(a, \), where « is not an integer? Even

though we lose the interpretation of Y as the sum of the Exponentials, the intuition

about the sum of expectation and variance still applies, to give us

E(Y) = T
Var(Y) = %.

The rigorous proof, of course is by integration. We won’t present it here.



