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1 The Poisson

Definition 1.1. X is a Poisson RV with parameter λ, λ > 0, denoted as Poisson(λ)

if

P (X = k) = e−λ
λk

k!
, k = 0, 1, 2 · · ·

To check that the above defines a distribution, we need the following Lemma

Lemma 1.2.
∞∑
k=0

λk

k!
= eλ.

Proof. Define

f(x) =
∞∑
k=0

xk

k!
.

We see that f(0) = 1. Moreover,

d

dx
f(x) =

∞∑
k=0

d

dx

xk

k!

=
∞∑
k=1

d

dx

xk−1

(k − 1)!

=
∞∑
k=0

d

dx

xk

k!
= f(x).

By uniqueness of solution to an initial value ODE problem, we conclude f(x) = ex.
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1.1 Expectation

Lemma 1.3. Let X be a Poisson(λ) RV. Then E(X) = λ.

Proof.

E(X) = e−λ
∞∑
k=0

k
λk

k!

= e−λ
∞∑
k=0

λk

(k − 1)!

= λe−λ
∞∑
k=1

λk−1

(k − 1)!

= λe−λ
∞∑
k=0

λk

k!
= λ.

1.2 Variance

Lemma 1.4. Let X be a Poisson(λ) RV. Then V ar(X) = λ.

Proof.

E(X2) = e−λ
∞∑
k=0

k2
λk

k!

= e−λ
∞∑
k=0

k
λk

(k − 1)!

= λe−λ
∞∑
k=1

k
λk−1

(k − 1)!

= λe−λ
∞∑
k=0

(k + 1)
λk

k!
= λ2 + λ.

Thus

V ar(X) = E(X2)− E2(X) = λ.
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1.3 Poisson as approximation to Binomial distribution

1.3.1 The approximation

Let X be a Binomial(n,p) RV such that np = λ, n is large and p is small (think

n→∞ and p := λ/n.) Then

P (X = k) =
n!

k!(n− k)!
pk(1− p)n−k

=
n!

k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k
=

n(n− 1)(n− 2) · · · (n− k + 1)

nk
λk

k!

(
1− λ

n

)n(
1− λ

n

)k .
As n→∞, (1−λn)

n

→ e−λ. Thus P (X = k) ≈ e−λ λ
k

k!
.

1.3.2 Some examples

The following scenarios may be modeled as a Poisson RV (or rather a Possion ap-

proximation to a Binomial)

• The number of misprints on a page (or a group of pages) of a book

• The number of people in a community who survive to 100

• The number of wrong telephone numbers that are dialed in a day

• The number of packages sold in a particular store each day

• The number of customers entering a post office on a given day

• The number of α-particles discharged in a fixed period of time from some ra-

dioactive material

• The number of officers died by horsekick in a battalion.

In short, the Poisson RV is used to model rare events that happens with some

given average (λ).

Example 1.5. The average number of typo on a page of a math book is 1/2. What

is the probability that there are at least 1 error on the first page of your textbook?
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Ans: Let’s just explain again why Poisson(1/2) is the appropriate distribution

to use here. There are many (n) words on a particular page of a textbook, and the

probability (p) of any word being a typo is small, but the expectation (i.e. the average

number of typos) is np = 1/2.

We have P (X ≥ 1) = 1− P (X = 0) = 1− e−1/2 ≈ .393.

Example 1.6. The average number of customers arriving at lunch time at the New

Brunswick post office is 1. What is the probability that there is exactly 1 customer

arriving at New Brunswick post office at lunch time today?

Ans: Poisson(1) is the appropriate distribution to use. Imagine there can be many

(n) custommers (potentially those living in New Brunswick) arriving at the Post office

during lunch (potentially ∞!). The probability that any customer going to the Post

office at lunch is p, and this p is such that np = 1.

We have P (X = 1) = e−1.

Remark: You may wonder how to estimate the actual λ. Here’s a possible way:

for the post office example record the number of customers arriving at the Post Office

during lunch during a 30 days interval. Take that average, it should be approximately

λ.

For the typo example, count the number of typos in 30 pages or so. Take the

average, again it should be approximately λ.

These are examples of the Law of Large Number: the average over time is ap-

proximately equal to the expectation of the random variable. We’ll cover it later on

in this semester.

Example 1.7. The average number of officers died by horse kick at a particular

batallion is 3. What is the probability that 2 officers will die by horse kick this year?

Ans: Imagine there are many (n) officers in the batallion, and each has a small

probability (p) of being dead by horse kick, such that np = 3.

Then P (X = 2) = e−3 3
2

2!
.

1.4 Poisson as model of arrival of events

We have mentioned the example of using Poisson random variable to model Post office

customers arrival at lunch time. We argued it using the Binomial approximation. It

turns out that the Poisson random variable can be used in a very similar way to

model events arriving at a certain rate, for example earthquake, people arriving at a

particular establishment etc.
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1.5 Description of the model

Let us fix a λ > 0 to be the rate of the event arrival (λ has the unit of something /

time, for example 1 person / min, 2 earthquakes / year etc.) We make the following

assumptions:

• For small h, the probability that exactly 1 event occurs in a given interval of

length h is λh+ o(h), where o(h) denotes quantity very small with respec to h

( o(h)/h→ 0 as h→ 0, like h2).

• The probability that 2 or more events occur in an interval of length h is equal

to o(h).

• The number of events happening in non-overlapping intervals are independent.

Now let us fix a time s. We would like to find the distribution of the number

of events happening between s, t, denoted as N(s, t). We have

Lemma 1.8. If the above assumptions are satisfied, then N(s, t) has distribution

Poisson(λ(t− s)).

Proof. We divide the interval (s, t) into n subintervals, each with length

(t − s)/n. For a fixed k, we want to compute P (N(s, t) = k). Let E be the

event that at most one event occurs within each interval. Then

P (N(s, t) = k) = P (N(s, t) = k,E) + P (N(s, t) = k,Ec).

We show P (Ec) = 0, as n→∞. Note that

P (Ec) ≤ nP ( more than 1 events occur in the first interval)

≤ n o((t− s)/n)→ 0 as n→∞.

Now

P (N(t, s) = k,E) =

(
n

k

)(
λ(t− s)

n
+ o((t− s)/n)

)k (
1− λ(t− s)

n
+ o((t− s)/n)

)n−k
.

Denoting p = λ(t−s)
n

+o((t−s)/n) we see that pn→ λ as n→∞. Thus arguing

almost the same as the Binomial approximation,we see that

P (N(t, s) = k) ≈ e−λλkk!.
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Example 1.9. Earth quake occurs in California with rate 2 per week. What is

the probability that there will be no earth quake during the next month?

Ans: The number earth quake within next month is Possion (8). Thus

P (X = 0) = e−8.

Remark: Let T be the number of weeks until the next earthquake (T is a random

variable). If T > t it means that there is no earthquake within t weeks. That is

P (T > t) = e−2t. We also have P (T ≤ t) = 1− e−λt.

2 The negative binomial

Definition 2.1. X is a Negative Binomial with parameters p, r, 0 ≤ p ≤ 1, r integer,

r ≥ 1 denoted as Negative Bin(r, p) if

P (X = k) =

(
k − 1

r − 1

)
(1− p)k−rpr−1p

=

(
k − 1

r − 1

)
(1− p)k−rpr, k = r, r + 1, r + 2, · · ·

Remark: The negative binomial represents the number of trials until the first r

successes, if the success probability of each trial is p.

We can represent a Negative Binomial (r,p) as followed:

Proposition 2.2. Let Y1, Y2, · · · , Yr be independent Geometric(p). Then X =
∑r

i=1 Yi

has Negative Bin(r,p) distribution.

Proof.

P (
r∑
i=1

Yi = k) =
∑

k1,k2,···kr:
∑
i ki=k

P (Yi = ki, i = 1, · · · r)

=
∑

k1,k2,···kr:
∑
i ki=k

r∏
i=1

(1− p)ki−1p

=
∑

k1,k2,···kr:
∑
i ki=k

r∏
i=1

(1− p)ki−1p

=
∑

k1,k2,···kr:
∑
i ki=k

(1− p)k−rpr

=

(
k − 1

r − 1

)
(1− p)k−rpr,
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where the last inequality is because the number of ways we can write a sum of r

positive integers adding up to k is exactly
(
k−1
r−1

)
.

Remark 2.3. For k ≥ r, let Y have Bin(k,p) distribution. Then

P (Y = r) =

(
k

r

)
pr(1− p)k−r.

On the other hand, the probability that r successes happen at the first k − 1 trials is(
k − 1

r

)
pr(1− p)k−r.

Substracting these two probabilities gives the probability that we have 5 successes, but

the last one is on the k trial:(
k

r

)
pr(1− p)k−r −

(
k − 1

r

)
pr(1− p)k−r =

(
k − 1

r − 1

)
pr(1− p)k−r,

by the identity (
k − 1

r − 1

)
+

(
k − 1

r

)
=

(
k

r

)
.

But this is also the probability that a Neg Bin (r, p) takes value k.

Remark 2.4. Let Y = X − r be the number of failures before r successes. Then it is

clear that

P (Y = k) = P (X = k + r) =

(
k + r − 1

r − 1

)
pr(1− p)k−r

=

(
k + r − 1

k

)
pr(1− p)k−r

There is a well-known identity in combinatorics that says(
−r
k

)
= (−1)k

(
k + r − 1

k

)
=

((
r

k

))
,

where the last notation denotes a multiset coefficient: it counts the number of combi-

nations you can get from a sample of size k from r objects, with replacement (so with

repetition in your sample). For example, from the set {1, 2}, if we pick 3 objects with

replacement then all possible outcomes would be {1, 1, 2}, {2, 2, 1}, , {1, 1, 1}, {2, 2, 2}.
In general, the number of ways to pick k objects out of r objects with replacement

is the same as finding the number of ways to sum
∑r

i=1 ai = k where ai ≥ 0. The
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interpretation is ai represents the number of the ith object in the sample. We have

argued before that this number of way is
(
k+r−1
r−1

)
=
(
k+r−1
k

)
.

Finally, the name negative binomial comes from the relation(
−r
k

)
= (−1)k

(
k + r − 1

k

)
.

2.1 Expectation

Lemma 2.5. Let X be a Negative Bin(r,p) RV. Then E(X) = r
p
.

Heuristically we can argue it as followed:

E(X) = E(Y1 + Y2 + · · ·+ Yr) = 1/p+ 1/p+ · · · 1/p = r/p.

For a rigorous proof, you can see the textbook, which uses a similar technique as

when we computed the Binomial.

2.2 Variance

Lemma 2.6. Let X be a Negative Bin(r,p) RV. Then V ar(X) = r(1
p
− 1

p2
).

Again, heuristically, since Yi are independent:

V ar(X) = V ar(Y1 + Y2 + · · ·+ Yr) = (
1

p
− 1

p2
) + (

1

p
− 1

p2
) + · · · (1

p
− 1

p2
) = r(

1

p
− 1

p2
).

For a rigorous proof, you can also see the textbook.

2.3 Example

Example 2.7. At all times, a pipe-somking professor carries 2 match boxes - 1 in his

left hand pocket and one in his right hand pocket. Each time he needs a match, he is

equally likely to take it from either pocket. Suppose the mathematician first discovers

that one of his match boxes is empty and both boxes contained N matches initially.

What is the probability that there are exactly k matches, k = 0, 1, · · · , N in the other

box?

Ans: Let E be the event that the right hand box is empty (then Ec is the event

that the left hand box is empty, by hypothesis). We have

P(k matches remaining) = P(k matches remaining |E) P(E) + P(k matches re-

maining |Ec) P(Ec).
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By symmetry of the problem, P(k matches remaining |E) = P(k matches remain-

ing |Ec) and P (E) = P (Ec) = 1/2. Thus

P(k matches remaining) = P(k matches remaining |E).

Now P(k matches remaining |E) = P(k matches remaining, E)/P (E) = 2 P(k

matches remaining, E).

If we have k matches remaining in the left hand pocket and the right hand box is

empty, out of N + (N − k) + 1 trials, (we must add the last trial where he discovers

that the box is empty) we must have picked N from the right, N − k from the left

and the last one from the right (the one that he discovers it is empty).

If we think of picking from the right as “success” then this is the setting of the

negative geometric. Thus the probability of interest is

2

(
2N + 1− k

N

)
(1/2)N+1(1/2)N−k =

(
2N + 1− k

N

)
(1/2)2N−K .

2.4 The hypergeometric

Definition 2.8. X is a Hypergeometric RV with parameters N,m, n; N,m, n integers,

0 ≤ m,n ≤ N if

P (X = k) =

(
m
k

)(
N−m
n−k

)(
N
n

) , k = 0, · · · , n.

Remark: 1. Consider the experiment of picking n balls out of N balls, out of which

m are white, N −m are black without replacement. The Hypergeometric represents

the number of white balls we have in our sample.

2. It could be that m < n, that is the number of white balls available in the urn

is less than the sample size. In this case by convention we say
(
n
k

)
= 0 if k > n, which

implies P (X = k) = 0 for k > m.

Again, it is not easy to establish analytically that

n∑
k=0

(
m
k

)(
N−m
n−k

)(
N
n

) = 1,

but heuristically, you can see that the number of ways we can pick n objects out

of N objects, which consist of 2 groups, equal to the number of ways we can pick the

first k objects out of the first group and the first n− k objects out of the 2nd group.

That is
n∑
k=0

(
m

k

)(
N −m
n− k

)
=

(
N

n

)
.
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2.5 Expectation

Lemma 2.9. Let X be a Hypergeometric(N,m,n) RV. Then E(X) = nm
N
.

Proof.

E(X) =
n∑
k=0

k

(
m

k

)(
N −m
n− k

)/(
N

n

)
Using the identity

k

(
m

k

)
= m

(
m− 1

k − 1

)
,

we have

E(X) =
n∑
k=0

m

(
m− 1

k − 1

)(
(N − 1)− (m− 1)

(n− 1)− (k − 1)

)/
N

n

(
N − 1

n− 1

)
= n

m

N

2.6 Variance

Lemma 2.10. Let X be a Hypergemotric(N,m,n) RV. Then

V ar(X) =
nm

N

[
(n− 1)(m− 1)

(N − 1)
+ 1− nm

N

]
.

If we denote p = m/N and observe that

m− 1

N − 1
=
Np− 1

N − 1
= p− 1− p

N − 1
,

then we also have

V ar(X) = np(1− p)
(

1− n− 1

N − 1

)
.

Proof: See textbook. It relies on showing that

E(Xk) =
nm

N
E((Y + 1)k−1),

where Y is a Hypergeometric (N-1, m-1, n-1).

10



2.7 Binomial approximation to Hypergeometric

The expression E(X) = np and

V ar(X) = np(1− p)
(

1− n− 1

N − 1

)
suggests that the Hypergeometric is close to a Binomial(n, m/N) if N is large relative

to n, keeping p constant. Indeed this is the case when we sample a large popula-

tion. We sample without replacement, but we treat the resulting distribution as a

Binomial(n,p). The calculation for the approximation is as followed:

P (X = k) =

(
m

k

)(
N −m
n− k

)/(
N

n

)
=

m!

(m− k)!k!

(N −m)!

(N −m− n+ k)!(n− k)!

(N − n)!n!

N !

=
n!

(n− k)!k!
× m

N

m− 1

N − 1
· · · m− k + 1

N − k + 1

×N −m
N − k

N −m− 1

N − k − 1
· · · N −m− (n− k − 1)

N − k − (n− k − 1)

≈
(
n

k

)
pk(1− p)n−k.
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