Bernoulli, Binomial and Geometric

Math 477
October 6, 2014

1 The Bernoulli

Definition 1.1. X is a Bernoulli $R V$ with parameter $p, 0 \leq p \leq 1$, denoted as $\operatorname{Bernoulli}(p)$ or $\operatorname{Ber}(p)$ if $P(X=1)=p$ and $P(X=0)=1-p$..

Remark: The Bernoulli RV models the one trial experiment with success probability p, where 1 represents a success and 0 a failure.

1.1 Expectation and Variance

It is clear that if X is a $\operatorname{Bernoulli}(\mathrm{p})$ then $E(X)=p$ and $\operatorname{Var}(X)=p-p^{2}=p(1-p)$.

2 The Binomial

Definition 2.1. X is a Binomial $R V$ with parameters $n, p, n \geq 1$ an integer $0 \leq p \leq$ 1, denoted as $\operatorname{Bin}(n, p)$ if

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

Remark: The Binomial random variable models a n trials experiment, where all trials are independent and each trial's success probability is p.

We check that the formula above indeed gives a valid distribution:
a. It is clear that $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \geq 0$.
b. From the Binomial theorem,

$$
\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=(1+(1-p))^{n}=1
$$

Thus $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \leq 1$, and it is indeed a probability distribution.

2.1 Expectation

Lemma 2.2. Let X be a $\operatorname{Bin}(n, p) R V$. Then $E(X)=n p$.
Proof. We have

$$
\begin{aligned}
E(X) & =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=1}^{n} k \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} \\
& =\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k} \\
& =n \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} p^{k}(1-p)^{(n-1)-(k-1)} \\
& =n \sum_{k=0}^{n-1} \frac{(n-1)!}{k!((n-1)-k)!} p^{k+1}(1-p)^{((n-1)-k} \\
& =n p \sum_{k=0}^{n-1} \frac{(n-1)!}{k!((n-1)-k)!} p^{k}(1-p)^{((n-1)-k} \\
& =n p,
\end{aligned}
$$

since the sum is over the probability distribution of a $\operatorname{Bin}(n-1, p) R V$.

2.2 Variance

Lemma 2.3. Let X be a $\operatorname{Bin}(n, p) R V$. Then $\operatorname{Var}(X)=n p(1-p)$.

Proof. We need to compute $E\left(X^{2}\right)$. Arguing similarly as the above we have

$$
\begin{aligned}
E\left(X^{2}\right) & =\sum_{k=0}^{n} k^{2}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=1}^{n} k^{2} \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} \\
& =\sum_{k=1}^{n} k \frac{n!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k} \\
& =n \sum_{k=1}^{n} k \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} p^{k}(1-p)^{(n-1)-(k-1)} \\
& =n \sum_{k=0}^{n-1}(k+1) \frac{(n-1)!}{k!((n-1)-k)!} p^{k+1}(1-p)^{((n-1)-k} \\
& =n p \sum_{k=0}^{n-1}(k+1) \frac{(n-1)!}{k!((n-1)-k)!} p^{k}(1-p)^{((n-1)-k} \\
& =n p[(n-1) p+1],
\end{aligned}
$$

since the sum is equal to the expectation of $Y+1$ where Y has $\operatorname{Bin}(\mathrm{n}-1, \mathrm{p})$ distribution.
Thus

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-E^{2}(X)=n(n-1) p^{2}+n p-(n p)^{2}=n p-n p^{2}=n p(1-p) .
$$

2.3 Examples

Example 2.4. A communication system consists of n components, each of which independently functions with probability p. The total system is said to operate effectively if at least one half of its components function.
a. What is the probability that a 5-component system function effectively?
b. What is the probability that a 3-component system function effectively?
c. For what p is the 5 component system more likely to function effectively than a 3 component system?

Ans:
a. Let X be the number of functioning components in the 5 system. Then X has $\operatorname{Bin}(5, \mathrm{p})$ distribution. Thus

$$
P(X \geq 3)=\binom{5}{3} p^{3}(1-p)^{2}+\binom{5}{4} p^{4}(1-p)+p^{5}
$$

b. Let Y be the number of functioning components in the 3 system. Then Y has $\operatorname{Bin}(3, \mathrm{p})$ distribution. Thus

$$
P(X \geq 2)=\binom{3}{2} p^{2}(1-p)+p^{3}
$$

c. 5 system is more likely to function effectively than a 3 system if

$$
10 p^{3}(1-p)^{2}+5 p^{4}(1-p)+p^{5}>3 p^{2}(1-p)+p^{3}
$$

or

$$
3(p-1)^{2}(2 p-1)>0
$$

or

$$
p>1 / 2 .
$$

Example 2.5. Screws produced by a company are defective with porbability 0.01. The company sells screws in package of 10 and offers money-back guarantee if more than 1 screw are defective. What is the probability that a package will be refunded?

Ans: Let X be the number of defective screws in a package. Then X has distribution $\operatorname{Bin}(0.01,10)$. Thus

$$
\begin{aligned}
P(X>1) & =1-P(X \leq 1)=1-P(X=0)-P(X=1) \\
& =1-(.99)^{1} 0-10(.01)(.99)^{9} .
\end{aligned}
$$

Example 2.6. (Coupon selection) Each bag of chips contains a hidden coupon. There are 10 different coupons, and suppose the chance of getting coupon from different bags of chips are independent. Let X be the number of bags of chips one opens before collecting all different coupons.
a. What is $P(X=5), P(X=7), P(X=8)$?
b. What is $P(X=10)$?

Ans:
a. It is clear that we need to open at least 10 bags of chips to get 10 different coupons. So $P(X=5)=P(X=7)=P(X=8)=0$.
b. If we let Y_{i} be the number of ith coupon we get from opening 10 bags of chips, then Y_{i} has distribution $\operatorname{Bin}(1 / 10,10)$. Note that the $Y_{i}, i=1, \cdots, 10$ are NOT independent, because $\sum_{i=1}^{10} Y_{i}=10$. For example, if $Y_{3}=9, Y_{4}=1$ then all the other $Y_{i}, i \neq 3,4$ are 0 . So while it is true that

$$
P(X=10)=P\left(Y_{1}=1, Y_{2}=1, \cdots, Y_{10}=1\right)
$$

we do not know how to handle the above expression.
So instead we compute $P(X>10)$. Then

$$
P(X>10)=P\left(Y_{i}=0, \text { for some } i\right)=P\left(Y_{1}=0 \text { or } Y_{2}=0 \cdots Y_{10}=0\right),
$$

and we can use the inclusion-exclusion formula as before.
Note also that

$$
P\left(Y_{i}=0\right)=\binom{10}{0}(1 / 10)^{0}(9 / 10)^{10}=(9 / 10)^{10}
$$

by the Binomial distribution.
If we let $Y_{i j}$ denote the number coupons NOT of type i and j we get in opening 10 bags of chips, then $Y_{i j}$ has distribution $\operatorname{Bin}(8 / 10,10)$. Thus

$$
P\left(Y_{i}=0, Y_{j}=0\right)=P\left(Y_{i j}=10\right)=(8 / 10)^{10}
$$

Similar argument gives us the rest of the result as discussed before.

2.4 Binomial distribution for a large number of trials - Stirling formula

Example 2.7. Suppose in a population the probability of being a male is p and being a female is $(1-p)$. The scientist would like to test the hypothesis whetehr $p=1 / 2$ or not. A sample of size $n=2 k$ is pooled from the population for a large k (hence large $n)$. What is the probability that we get exactly k males in this sample?

Ans: If we let X be number of males in the sample then X has distribution $\operatorname{Bin}(2 k, p)$. Thus

$$
P(X=k)=\binom{2 k}{k} p^{k}(1-p)^{k}
$$

Normally this is all we can say. But for large k there is a very nice approximation of the above probability, via the Stirling's formula.

2.4.1 The Stirling formula

Theorem 2.8. For n large, $n!\approx n^{n+1 / 2} e^{-n} \sqrt{2 \pi}$. More precisely,

$$
\lim _{n \rightarrow \infty} \frac{n!}{n^{n+1 / 2} e^{-n} \sqrt{2 \pi}}=1
$$

Proof. (You can skip this proof) We only sketch the proof here.
Step 1. $n!=\int_{0}^{\infty} x^{n} e^{-x} d x$. Proof by induction on n.
Step 2. Change of variable: $x=n+\sqrt{n} t$. Then

$$
\begin{aligned}
\int_{0}^{\infty} x^{n} e^{-x} d x & =\int_{-\sqrt{n}}^{\infty}(n+\sqrt{n} t)^{n} e^{-(n+\sqrt{n} t)} \sqrt{n} d t \\
& =n^{n+1 / 2} e^{-n} \int_{-\sqrt{n}}^{\infty}\left(1+\frac{t}{\sqrt{n}}\right)^{n} e^{-\sqrt{n} t} d t
\end{aligned}
$$

Step 3. Show that the function $f^{n}(t)$, defined as

$$
\begin{aligned}
f^{n}(t) & =0, \quad t<-\sqrt{n} \\
& =\left(1+\frac{t}{\sqrt{n}}\right)^{n} e^{-\sqrt{n} t}, \quad t \geq-\sqrt{n}
\end{aligned}
$$

satisfies $f^{n}(t) \rightarrow e^{-t^{2} / 2}$ as $n \rightarrow \infty$.
This can be done by showing

$$
\log f^{n}(t)=n \log \left(1+\frac{t}{\sqrt{n}}\right)-\sqrt{n} t \rightarrow-t^{2} / 2
$$

for $|t| \leq \frac{\sqrt{n}}{2}$, using the Taylor expansion:

$$
\log (1+x)=x-\frac{x^{2}}{2}+O\left(x^{3}\right),|x| \leq 1 / 2
$$

Note: the following argument is wrong as it involves ∞ / ∞ which is an indeterminate form: Since

$$
\left(1+\frac{t}{\sqrt{n}}\right)^{n}=\left[\left(1+\frac{t}{\sqrt{n}}\right)^{\sqrt{n}}\right]^{\sqrt{n}}
$$

as $n \rightarrow \infty$

$$
\left(1+\frac{t}{\sqrt{n}}\right)^{n} \approx e^{\sqrt{n} t}
$$

Therfore $\left(1+\frac{t}{\sqrt{n}}\right)^{n} e^{-\sqrt{n} t} \rightarrow 1$ as $n \rightarrow \infty$.
Step 4. Show that

$$
\int_{-\sqrt{n}}^{\infty}\left(1+\frac{t}{\sqrt{n}}\right)^{n} e^{-\sqrt{n} t} d t \rightarrow \int_{-\infty}^{\infty} e^{-x^{2} / 2}=\sqrt{2 \pi}
$$

as $n \rightarrow \infty$ by DCT.
Differentiate $f^{n}(t)$ in n gives

$$
\frac{d}{d n} f^{n}(t)=\log \left(1+\frac{t}{\sqrt{n}}\right)-\frac{\frac{t}{\sqrt{n}}}{2\left(1+\frac{t}{\sqrt{n}}\right)}-\frac{t}{2 \sqrt{n}} .
$$

Apply Taylor expansion on $\log (1+x)$ gives

$$
\begin{aligned}
\frac{d}{d n} \log f^{n}(t) & =\frac{t}{\sqrt{n}} \frac{1+2 \frac{t}{\sqrt{n}}}{2\left(1+\frac{t}{\sqrt{n}}\right)}-\frac{t^{2}}{2 n}-\frac{t}{2 \sqrt{n}}+O\left(\left[\frac{t}{\sqrt{n}}\right]^{3}\right) \\
& =\frac{t}{2 \sqrt{n}} \frac{\frac{t}{\sqrt{n}}}{1+\frac{t}{\sqrt{n}}}-\frac{t^{2}}{2 n}+O\left(\left[\frac{t}{\sqrt{n}}\right]^{3}\right) \\
& =\frac{\frac{t^{2}}{2 n}}{1+\frac{t}{\sqrt{n}}}-\frac{t^{2}}{2 n}+O\left(\left[\frac{t}{\sqrt{n}}\right]^{3}\right) .
\end{aligned}
$$

So that if $t<0$ then $\frac{d}{d n} f^{n}(t)>0$ and $t>0$ then $\frac{d}{d n} f^{n}(t)<0$ (for n large). Thus $f^{n}(t)$ can be dominated by

$$
\begin{aligned}
g(t) & =e^{-t^{2} / 2}, \quad t<0 \\
& =f^{1}(t)=(1+t) e^{-t}, \quad t>0
\end{aligned}
$$

2.4.2 Applying Stirling's formula

Back to our example, since the sample size k is large:

$$
\begin{aligned}
\binom{2 k}{k}=\frac{(2 k)!}{k!k!} & \approx \frac{(2 k)^{2 k+1 / 2} e^{-2 k} \sqrt{2 \pi}}{\left[k^{k+1 / 2} e^{-k} \sqrt{2 \pi}\right]^{2}}=\frac{(2 k)^{2 k+1 / 2} e^{-2 k}}{k^{2 k+1} e^{-2 k} \sqrt{2 \pi}} \\
& =\frac{2^{2 k+1 / 2}}{\sqrt{k} \sqrt{2 \pi}}=\frac{4^{k}}{\sqrt{k \pi}}
\end{aligned}
$$

Hence

$$
P(X=k) \approx \frac{[4 p(1-p)]^{k}}{\sqrt{k \pi}}
$$

Remark: If $p=1 / 2$ then $\sqrt{k} P(X=k)$ reduces to $\frac{1}{\sqrt{\pi}}$. For any other value of p, $\sqrt{k} P(X=k)$ is very close to 0 (converging exponentially fast).

3 The Geometric

Definition 3.1. X is a Geometric $R V$ with parameters $p, 0 \leq p \leq 1$, denoted as Geometric (p) if

$$
P(X=k)=(1=p)^{k-1} p
$$

Remark: The Geometric RV models the number of trials we must conduct until the first success where the success probability is p.

Example 3.2. An urn containing 8 white and 10 black balls. Balls are selected randomly with replacement until a black one is obtained. What is the probability that
a. Exactly n draws are needed?
b. At least k draws are needed?

Ans: Let X denote the number of draws until the first black. Then X has distributio Geometric $(10 / 18)=$ Geometric $(5 / 9)$. Thus
a.

$$
P(X=n)=(4 / 9)^{n-1}(5 / 9)=\left(4^{n-1} 5\right) / 9^{n} .
$$

b.

$$
\begin{aligned}
P(X \geq k) & =5 / 9 \sum_{i=k}^{\infty}(4 / 9)^{n-1} \\
& =5 / 9 \frac{(4 / 9)^{k-1}}{5 / 9}=(4 / 9)^{k-1}
\end{aligned}
$$

