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1 The Bernoulli

Definition 1.1. X is a Bernoulli RV with parameter p, 0 ≤ p ≤ 1, denoted as

Bernoulli(p) or Ber(p) if P (X = 1) = p and P (X = 0) = 1− p..

Remark: The Bernoulli RV models the one trial experiment with success proba-

bility p, where 1 represents a success and 0 a failure.

1.1 Expectation and Variance

It is clear that if X is a Bernoulli(p) then E(X) = p and V ar(X) = p−p2 = p(1−p).

2 The Binomial

Definition 2.1. X is a Binomial RV with parameters n, p, n ≥ 1 an integer 0 ≤ p ≤
1, denoted as Bin(n,p) if

P (X = k) =

(
n

k

)
pk(1− p)n−k.

Remark: The Binomial random variable models a n trials experiment, where all

trials are independent and each trial’s success probability is p.

We check that the formula above indeed gives a valid distribution:

a. It is clear that P (X = k) =
(
n
k

)
pk(1− p)n−k ≥ 0.

b. From the Binomial theorem,
n∑
k=0

(
n

k

)
pk(1− p)n−k = (1 + (1− p))n = 1.

Thus P (X = k) =
(
n
k

)
pk(1−p)n−k ≤ 1, and it is indeed a probability distribution.
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2.1 Expectation

Lemma 2.2. Let X be a Bin(n,p) RV. Then E(X) = np.

Proof. We have

E(X) =
n∑
k=0

k

(
n

k

)
pk(1− p)n−k

=
n∑
k=1

k
n!

k!(n− k)!
pk(1− p)n−k

=
n∑
k=1

n!

(k − 1)!(n− k)!
pk(1− p)n−k

= n

n∑
k=1

(n− 1)!

(k − 1)!((n− 1)− (k − 1))!
pk(1− p)(n−1)−(k−1)

= n
n−1∑
k=0

(n− 1)!

k!((n− 1)− k)!
pk+1(1− p)((n−1)−k

= np
n−1∑
k=0

(n− 1)!

k!((n− 1)− k)!
pk(1− p)((n−1)−k

= np,

since the sum is over the probability distribution of a Bin(n-1,p) RV.

2.2 Variance

Lemma 2.3. Let X be a Bin(n,p) RV. Then V ar(X) = np(1− p).
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Proof. We need to compute E(X2). Arguing similarly as the above we have

E(X2) =
n∑
k=0

k2
(
n

k

)
pk(1− p)n−k

=
n∑
k=1

k2
n!

k!(n− k)!
pk(1− p)n−k

=
n∑
k=1

k
n!

(k − 1)!(n− k)!
pk(1− p)n−k

= n
n∑
k=1

k
(n− 1)!

(k − 1)!((n− 1)− (k − 1))!
pk(1− p)(n−1)−(k−1)

= n

n−1∑
k=0

(k + 1)
(n− 1)!

k!((n− 1)− k)!
pk+1(1− p)((n−1)−k

= np
n−1∑
k=0

(k + 1)
(n− 1)!

k!((n− 1)− k)!
pk(1− p)((n−1)−k

= np[(n− 1)p+ 1],

since the sum is equal to the expectation of Y +1 where Y has Bin(n-1,p) distribution.

Thus

V ar(X) = E(X2)− E2(X) = n(n− 1)p2 + np− (np)2 = np− np2 = np(1− p).

2.3 Examples

Example 2.4. A communication system consists of n components, each of which in-

dependently functions with probability p. The total system is said to operate effectively

if at least one half of its components function.

a. What is the probability that a 5-component system function effectively?

b. What is the probability that a 3-component system function effectively?

c. For what p is the 5 component system more likely to function effectively than

a 3 component system?

Ans:

a. Let X be the number of functioning components in the 5 system. Then X has

Bin(5,p) distribution. Thus

P (X ≥ 3) =

(
5

3

)
p3(1− p)2 +

(
5

4

)
p4(1− p) + p5.
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b. Let Y be the number of functioning components in the 3 system. Then Y has

Bin(3,p) distribution. Thus

P (X ≥ 2) =

(
3

2

)
p2(1− p) + p3.

c. 5 system is more likely to function effectively than a 3 system if

10p3(1− p)2 + 5p4(1− p) + p5 > 3p2(1− p) + p3,

or

3(p− 1)2(2p− 1) > 0

or

p > 1/2.

Example 2.5. Screws produced by a company are defective with porbability 0.01. The

company sells screws in package of 10 and offers money-back guarantee if more than

1 screw are defective. What is the probability that a package will be refunded?

Ans: Let X be the number of defective screws in a package. Then X has distri-

bution Bin(0.01, 10). Thus

P (X > 1) = 1− P (X ≤ 1) = 1− P (X = 0)− P (X = 1)

= 1− (.99)10− 10(.01)(.99)9.

Example 2.6. (Coupon selection) Each bag of chips contains a hidden coupon. There

are 10 different coupons, and suppose the chance of getting coupon from different bags

of chips are independent. Let X be the number of bags of chips one opens before

collecting all different coupons.

a. What is P (X = 5), P (X = 7), P (X = 8)?

b. What is P (X = 10)?

Ans:

a. It is clear that we need to open at least 10 bags of chips to get 10 different

coupons. So P (X = 5) = P (X = 7) = P (X = 8) = 0.

b. If we let Yi be the number of ith coupon we get from opening 10 bags of chips,

then Yi has distribution Bin(1/10, 10). Note that the Yi, i = 1, · · · , 10 are NOT

independent, because
∑10

i=1 Yi = 10. For example, if Y3 = 9, Y4 = 1 then all the other

Yi, i 6= 3, 4 are 0. So while it is true that

P (X = 10) = P (Y1 = 1, Y2 = 1, · · · , Y10 = 1),
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we do not know how to handle the above expression.

So instead we compute P (X > 10). Then

P (X > 10) = P (Yi = 0, for some i) = P (Y1 = 0 or Y2 = 0 · · · Y10 = 0),

and we can use the inclusion-exclusion formula as before.

Note also that

P (Yi = 0) =

(
10

0

)
(1/10)0(9/10)10 = (9/10)10,

by the Binomial distribution.

If we let Yij denote the number coupons NOT of type i and j we get in opening

10 bags of chips, then Yij has distribution Bin(8/10, 10). Thus

P (Yi = 0, Yj = 0) = P (Yij = 10) = (8/10)10.

Similar argument gives us the rest of the result as discussed before.

2.4 Binomial distribution for a large number of trials - Stir-

ling formula

Example 2.7. Suppose in a population the probability of being a male is p and being

a female is (1− p). The scientist would like to test the hypothesis whetehr p = 1/2 or

not. A sample of size n = 2k is pooled from the population for a large k (hence large

n). What is the probability that we get exactly k males in this sample?

Ans: If we let X be number of males in the sample then X has distribution

Bin(2k, p). Thus

P (X = k) =

(
2k

k

)
pk(1− p)k.

Normally this is all we can say. But for large k there is a very nice approximation of

the above probability, via the Stirling’s formula.

2.4.1 The Stirling formula

Theorem 2.8. For n large, n! ≈ nn+1/2e−n
√

2π. More precisely,

lim
n→∞

n!

nn+1/2e−n
√

2π
= 1.
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Proof. (You can skip this proof) We only sketch the proof here.

Step 1. n! =
∫∞
0
xne−xdx. Proof by induction on n.

Step 2. Change of variable: x = n+
√
nt. Then∫ ∞

0

xne−xdx =

∫ ∞
−
√
n

(n+
√
nt)ne−(n+

√
nt)
√
ndt

= nn+1/2e−n
∫ ∞
−
√
n

(1 +
t√
n

)ne−
√
ntdt

Step 3. Show that the function fn(t), defined as

fn(t) = 0, t < −
√
n

= (1 +
t√
n

)ne−
√
nt, t ≥ −

√
n

satisfies fn(t)→ e−t
2/2 as n→∞.

This can be done by showing

log fn(t) = n log
(

1 +
t√
n

)
−
√
nt→ −t2/2

for |t| ≤
√
n
2

, using the Taylor expansion:

log(1 + x) = x− x2

2
+O(x3), |x| ≤ 1/2.

Note: the following argument is wrong as it involves∞/∞ which is an indeterminate

form: Since

(1 +
t√
n

)n =
[
(1 +

t√
n

)
√
n
]√n

,

as n→∞
(1 +

t√
n

)n ≈ e
√
nt.

Therfore (1 + t√
n
)ne−

√
nt → 1 as n→∞.

Step 4. Show that∫ ∞
−
√
n

(1 +
t√
n

)ne−
√
ntdt→

∫ ∞
−∞

e−x
2/2 =

√
2π

as n→∞ by DCT.

Differentiate fn(t) in n gives

d

dn
fn(t) = log

(
1 +

t√
n

)
−

t√
n

2(1 + t√
n
)
− t

2
√
n
.
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Apply Taylor expansion on log(1 + x) gives

d

dn
log fn(t) =

t√
n

1 + 2 t√
n

2(1 + t√
n
)
− t2

2n
− t

2
√
n

+O([
t√
n

]3)

=
t

2
√
n

t√
n

1 + t√
n

− t2

2n
+O([

t√
n

]3)

=
t2

2n

1 + t√
n

− t2

2n
+O([

t√
n

]3).

So that if t < 0 then d
dn
fn(t) > 0 and t > 0 then d

dn
fn(t) < 0 (for n large). Thus

fn(t) can be dominated by

g(t) = e−t
2/2, t < 0

= f 1(t) = (1 + t)e−t, t > 0.

2.4.2 Applying Stirling’s formula

Back to our example, since the sample size k is large:(
2k

k

)
=

(2k)!

k!k!
≈ (2k)2k+1/2e−2k

√
2π

[kk+1/2e−k
√

2π]2
=

(2k)2k+1/2e−2k

k2k+1e−2k
√

2π

=
22k+1/2

√
k
√

2π
=

4k√
kπ

Hence

P (X = k) ≈ [4p(1− p)]k√
kπ

.

Remark: If p = 1/2 then
√
kP (X = k) reduces to 1√

π
. For any other value of p,√

kP (X = k) is very close to 0 (converging exponentially fast).

3 The Geometric

Definition 3.1. X is a Geometric RV with parameters p, 0 ≤ p ≤ 1, denoted as

Geometric(p) if

P (X = k) = (1 = p)k−1p.
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Remark: The Geometric RV models the number of trials we must conduct until

the first success where the success probability is p.

Example 3.2. An urn containing 8 white and 10 black balls. Balls are selected

randomly with replacement until a black one is obtained. What is the probability that

a. Exactly n draws are needed?

b. At least k draws are needed?

Ans: Let X denote the number of draws until the first black. Then X has distri-

butio Geometric(10/18) = Geometric(5/9). Thus

a.

P (X = n) = (4/9)n−1(5/9) = (4n−15)/9n.

b.

P (X ≥ k) = 5/9
∞∑
i=k

(4/9)n−1

= 5/9
(4/9)k−1

5/9
= (4/9)k−1.
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