Expectation and variance

Math 477
October 2, 2014

1 Expectation

1.1 Definition

Definition 1.1. Let X be a discrete random variable. The expectation of X, denoted as $E(X)$ is defined as

$$
E(X)=\sum_{k} k P(X=k) .
$$

Remark: $E(X)$ is the average value of X. It is a constant. It has the interpretation that if we see many independent realizations of X, then the average of these realizations will be close to $E(X)$. This is the so called Law of Large Number, which we will discuss later.

Example 1.2. Let X be a RV with distribution $P(X=3)=1 / 2$ and $P(X=-2)=$ $1 / 2$. Then $E(X)=3 / 2-1=1 / 2$.

Example 1.3. Let X be the $R V$ representing the result of a die toss. Then

$$
E(X)=\frac{1+2+3+4+5+6}{6}=3.5 .
$$

Example 1.4. Let X be the RV representing the sum of the 2 independent dice. Then

$$
E(X)=\frac{(2+12)+(3+11) 2+(4+10) 3+(5+9) 4+(6+8) 5+(7) 6}{36}=7 .
$$

1.2 Expectation of a function of X

Theorem 1.5. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ and X a random variable. Then

$$
E(g(X))=\sum_{k} g(k) P(X=k)
$$

Note: The above is NOT a definition. Indeed by definition we have

$$
E(g(X))=\sum_{k} k P(g(X)=k) .
$$

Converting from the definition to the statement in the theorem is what we need to show. Proof. From the discussion of function of random variables, we already have

$$
P(g(X)=k)=\sum_{j: g(j)=k} P(X=j)
$$

Therefore,

$$
\begin{aligned}
E(g(X)) & =\sum_{k} k P(g(X)=k)=\sum_{k} k \sum_{j: g(j)=k} P(X=j) \\
& =\sum_{k} \sum_{j: g(j)=k} g(j) P(X=j) \\
& =\sum_{k} g(k) P(X=k) .
\end{aligned}
$$

Example 1.6. Let X be the result of a die toss. Then

$$
E\left(X^{2}\right)=\frac{1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}}{6}=91 / 6 .
$$

Example 1.7. Let X be a RV with distribution $P(X=1)=1 / 3, P(X=-1)=$ $1 / 6, P(X=2)=1 / 2$. Then

$$
E\left(X^{3}\right)=1 / 3-1 / 6+8 / 2=25 / 6 .
$$

Note: It is NOT true that $E(g(X))=g(E(X))$ unless g is a linear function of X (that is $g(x)=a x+c$, see below). For example for the die toss example, $E\left(X^{2}\right)=91 / 6$ is NOT equal to $(E(X))^{2}=49 / 4$.

1.3 Properties

For any RVs X, Y and constants a, c we have

$$
E(a X+c)=a E(X)+c
$$

In particular, $E(c)=c$ for any constant c.
Proof. We have

$$
E(a X)=\sum_{k}(a k+c) P(X=k)=a \sum_{k} P(X=k)+c \sum_{P(X=k)}=a E(X)+c .
$$

Example 1.8. Let X be the result of a die toss. Then

$$
\begin{aligned}
E(2 X) & =2 E(X)=7 \\
E\left(6 X^{2}\right) & =6 E\left(X^{2}\right)=91
\end{aligned}
$$

2 Variance

2.1 Definition

Definition 2.1. Let X be a random variable. The variance of X, denoted as $\operatorname{Var}(X)$ is defined as

$$
\operatorname{Var}(X)=E\left[(X-E(X))^{2}\right] .
$$

Remark: $\operatorname{Var}(X)$ is a non negative number, and a positive number if X is not a constant. It measures the "spreadness" of X : the larger the variance, the more spread out the random variable is (in terms of its value).

There is an alternative version for the $\operatorname{Var}(X)$ as followed.
Lemma 2.2. Let X be a random variable. Then $\operatorname{Var}(X)=E\left(X^{2}\right)-E^{2}(X)$.
Proof.

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-E(X))^{2}\right]=E\left(X^{2}-2 X E(X)+E^{2}(X)\right) \\
& =E\left(X^{2}\right)-2 E(X) E(X)+E^{2}(X) \\
& =E\left(X^{2}\right)-E^{2}(X) .
\end{aligned}
$$

Example 2.3. Let X be the random variable representing the result of the die toss. Then

$$
\operatorname{Var}(X)=91 / 6-49 / 4 .
$$

Remark: Because $\operatorname{Var}(X) \geq 0$, we can also deduce that for any random variable $X: E\left(X^{2}\right) \geq E^{2}(X)$.

2.2 Properties

Let X be a RV and a, c constants. Then

$$
\operatorname{Var}(a X+c)=a^{2} \operatorname{Var}(X) .
$$

In particular, $\operatorname{Var}(c)=0$ for a constant c. Note that the constant a factors out of $V a r$ as a^{2}, NOT a.
Proof.
$\operatorname{Var}(a X+c)=E\left([a X+c-E(a X+c)]^{2}\right)=E\left(a^{2}(X-E(X))^{2}\right)=a^{2} \operatorname{Var}(X)$.

