Random variables

Math 477
October 2, 2014

1 Random variable as a way to quantify random events

In an experiment, we have (random) outcomes. We can give them names (for example tossing a coin twice, we can get $H H, T T \cdots)$. Each of these have some weight attached to them, i.e. their probability (in the coin toss example, $1 / 4$ for each). However, we cannot do computations with these outcomes unless we give them some numerical values. A random variable is a way to quantify the random outcomes in a meaningful manner. We use capital letters at the end of the alphabet: X, Y, Z, to denote random variables. We will also use lowercase letter x, y, z to denote deterministic numbers. You should take care to distinguish between these two.

Because we assign numerical values to a random event, the set of the form $\{X=k\}$ or more generally $\{X \leq x\}$ are random events. The meaningful manner referred to above is that we need to be able to assign probability to events of the type $\{X \leq x\}$, from which we can deduce probability of events of the type $\{X=x\}$ or $\left\{x_{1} \leq X \leq\right.$ $\left.x_{2}\right\}$.

Example 1.1. Suppose we play a game where you win 3 dollars if the toss is H and lose 2 dollars if the toss is T. Assuming the coin is fair and let X be the random variable denoting your win / loss. Then

$$
\begin{aligned}
P(X=3) & =1 / 2 \\
P(X=-2) & =1 / 2 .
\end{aligned}
$$

1.1 Examples

Once we have the notion of random variables, there are many interesting random events that we want to quantify. Consider the following examples.

Example 1.2. Suppose we toss a coin until a H shows up. Suppose the probability of the coin showing $a H$ is p and the tosses are independent. Let X denotes the number of tosses until a H shows, including the toss that shows H. What is the distribution of X ?

Ans: By independence

$$
P(X=n)=(1-p)^{n-1} p .
$$

Note that we can also compute probability of events such as $\{X \leq n\}$:

$$
P(X \leq n)=\sum_{k=1}^{n}(1-p)^{k-1} p=p \frac{1-(1-p)^{n}}{p}=1-(1-p)^{n} .
$$

The above is the probability of having to wait at most n for the first H, which is the same as the probability of not getting all T in the first n tosses.

Example 1.3. Coupon collection Suppose therea re N distinct types of coupons, and the chance of getting any coupon is equally likely. Also each time we collect a coupon it is independent of our previous results. Let T be the random variable that denotes the number of trials before we obtain a complete set of at least one type of each coupon. What is the distribution of T ?

Ans: We want to compute $P(T=n)$. But this can be difficult. Rather we will compute $P(T>n)$ and deduce $P(T=n)$ afterward. For a fixed n, let $E_{1}, E_{2}, \cdots, E_{N}$ denote the events that the coupon of type $i, i=1, \cdots, N$ did not show up in the first n trials. Then

$$
\begin{aligned}
P(T>n)= & P\left(\cup_{i=1}^{N} E_{i}\right) \\
= & \sum_{i=1}^{N} P\left(E_{i}\right)-\sum_{i<j}^{N} P\left(E_{i} E_{j}\right)+\sum_{i<j<k}^{N} P\left(E_{i} E_{j} E_{k}\right)+\cdots \\
& +(-1)^{N+1} P\left(E_{1} E_{2} \cdots E_{N}\right) .
\end{aligned}
$$

Actually note that $P\left(E_{1} E_{2} \cdots E_{N}\right)=0$ since you have to get some coupon during the trials, you cannot miss all of them. Now by independence

$$
\begin{aligned}
P\left(E_{i}\right) & =\left(\frac{N-1}{N}\right)^{n} \\
P\left(E_{i} E_{j}\right) & =\left(\frac{N-2}{N}\right)^{n} \\
P\left(E_{i} E_{j} E_{k}\right) & =\left(\frac{N-3}{N}\right)^{n}
\end{aligned}
$$

Thus

$$
\begin{aligned}
P(T>n)= & N\left(\frac{N-1}{N}\right)^{n}-\binom{N}{2}\left(\frac{N-2}{N}\right)^{n}+\cdots+ \\
& (-1)^{N}\binom{N}{N-1}\left(\frac{1}{N}\right)^{n} \\
= & \sum_{i=1}^{N-1}(-1)^{i+1}\binom{N}{i}\left(\frac{N-i}{N}\right)^{n} .
\end{aligned}
$$

Now we can compute $P(T=n)$ as:

$$
P(T=n)=P(T>n-1)-P(T>n) .
$$

2 Discrete random variables

2.1 Definition

Definition 2.1. A discrete random variable is a $R V$ that can take at most countably many values with positive probability.

Remark: a. If a RV takes on finitely many values, then it is automatically a discrete RV. An example of a non-discrete RV would be a RV that is used to describe the waiting time for some event (for a bus to arrive, for a machine to break down etc.)
b. We will most often deal with RV that takes on values in the natural number set: $0,1,2,3, \cdots$. Just keep in mind that this needs not be the case: we have seen RV taking negative value in example (1.1). If your winning is a fractional amount of dollar, then we can also have a discrete RV that takes on a fractional value.
c. When investigating a RV, it is useful to look for its range: the set of values that it takes on with positive probability. For example, the range of X in example (1.1) is $\{3,-2\}$, and the range of X in example (1.3) is $\{N, N+1, N+2, \cdots\}$.
d. To specify a discrete random variable, we describe its probability mass function: $P(X=k)$ for all k such that $P(X=k)>0$. From a RV point of view, it is completely specified when its probability mass distribution is known. There are two ways to do this: we either describe an experiment where X represents some quantity from that experiment; or we just abstractly specify the distribution of X and look for some examples in reality that fit the distribution. An example of the second approach would be to specify

$$
P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, k=0,1,2, \cdots
$$

e. One should always check when given a probability mass function that it is valid. There are two conditions:

$$
\begin{array}{r}
0 \leq P(X=k) \leq 1, \forall k \\
\sum_{k} P(X=k)=1 .
\end{array}
$$

2.2 Some elementary probability identity

Here we assume that X is a discrete RV taking values on $0,1,2, \cdots$. Then for all integers $a \leq b$:

$$
\begin{aligned}
P(X<b) & =P(X \leq b+1) \\
P(X>a) & =P(X \geq a-1) \\
P(a<X<b) & =P(X<b)-P(X \leq a) \\
P(a \leq X<b) & =P(X<b)-P(X<a) \\
P(a \leq X \leq b) & =P(X \leq b)-P(X<a) .
\end{aligned}
$$

2.3 Function of random variables

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ and X a real valued RV. Then $g(X)$ is also a RV. What is the distribution of g ? If X is a discrete RV then we also have $g(X)$ is a discrete RV. Moreover

$$
P(g(X)=k)=\sum_{j: g(j)=k} P(X=j) .
$$

Example 2.2. Let X be a $R V$ with distribution $P(X=3)=1 / 3$ and $P(X=$ $-2)=2 / 3$. Then X^{2} is a discrete $R V$ with distribution $P\left(X^{2}=9\right)=1 / 3$ and $P(X=-2)=2 / 3$.

Example 2.3. Let X be a $R V$ with distribution $P(X=1)=1 / 6, P(X=-1)=$ $1 / 3, P(X=2)=1 / 2$. Then X^{2} is a discrete $R V$ with distribution $P\left(X^{2}=1\right)=1 / 2$ and $P\left(X^{2}=4\right)=1 / 2$.

