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1 Random variable as a way to quantify random

events

In an experiment, we have (random) outcomes. We can give them names (for example

tossing a coin twice, we can getHH,TT · · · ). Each of these have some weight attached

to them, i.e. their probability ( in the coin toss example, 1/4 for each). However,

we cannot do computations with these outcomes unless we give them some numerical

values. A random variable is a way to quantify the random outcomes in a meaningful

manner. We use capital letters at the end of the alphabet: X, Y, Z, to denote random

variables. We will also use lowercase letter x, y, z to denote deterministic numbers.

You should take care to distinguish between these two.

Because we assign numerical values to a random event, the set of the form {X = k}
or more generally {X ≤ x} are random events. The meaningful manner referred to

above is that we need to be able to assign probability to events of the type {X ≤ x},
from which we can deduce probability of events of the type {X = x} or {x1 ≤ X ≤
x2}.

Example 1.1. Suppose we play a game where you win 3 dollars if the toss is H and

lose 2 dollars if the toss is T. Assuming the coin is fair and let X be the random

variable denoting your win / loss. Then

P (X = 3) = 1/2

P (X = −2) = 1/2.
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1.1 Examples

Once we have the notion of random variables, there are many interesting random

events that we want to quantify. Consider the following examples.

Example 1.2. Suppose we toss a coin until a H shows up. Suppose the probability of

the coin showing a H is p and the tosses are independent. Let X denotes the number

of tosses until a H shows, including the toss that shows H. What is the distribution

of X?

Ans: By independence

P (X = n) = (1− p)n−1p.

Note that we can also compute probability of events such as {X ≤ n}:

P (X ≤ n) =
n∑
k=1

(1− p)k−1p = p
1− (1− p)n

p
= 1− (1− p)n.

The above is the probability of having to wait at most n for the first H, which is the

same as the probability of not getting all T in the first n tosses.

Example 1.3. Coupon collection Suppose therea re N distinct types of coupons, and

the chance of getting any coupon is equally likely. Also each time we collect a coupon

it is independent of our previous results. Let T be the random variable that denotes

the number of trials before we obtain a complete set of at least one type of each coupon.

What is the distribution of T?

Ans: We want to compute P (T = n). But this can be difficult. Rather we will

compute P (T > n) and deduce P (T = n) afterward. For a fixed n, let E1, E2, · · · , EN
denote the events that the coupon of type i, i = 1, · · · , N did not show up in the first

n trials. Then

P (T > n) = P (∪Ni=1Ei)

=
N∑
i=1

P (Ei)−
N∑
i<j

P (EiEj) +
N∑

i<j<k

P (EiEjEk) + · · ·

+(−1)N+1P (E1E2 · · ·EN).
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Actually note that P (E1E2 · · ·EN) = 0 since you have to get some coupon during

the trials, you cannot miss all of them. Now by independence

P (Ei) =

(
N − 1

N

)n
P (EiEj) =

(
N − 2

N

)n
P (EiEjEk) =

(
N − 3

N

)n
· · ·

Thus

P (T > n) = N

(
N − 1

N

)n
−
(
N

2

)(
N − 2

N

)n
+ · · ·+

(−1)N
(

N

N − 1

)(
1

N

)n
=

N−1∑
i=1

(−1)i+1

(
N

i

)(
N − i
N

)n
.

Now we can compute P (T = n) as:

P (T = n) = P (T > n− 1)− P (T > n).

2 Discrete random variables

2.1 Definition

Definition 2.1. A discrete random variable is a RV that can take at most countably

many values with positive probability.

Remark: a. If a RV takes on finitely many values, then it is automatically a

discrete RV. An example of a non-discrete RV would be a RV that is used to describe

the waiting time for some event (for a bus to arrive, for a machine to break down

etc.)

b. We will most often deal with RV that takes on values in the natural number

set: 0, 1, 2, 3, · · · . Just keep in mind that this needs not be the case: we have seen

RV taking negative value in example (1.1). If your winning is a fractional amount of

dollar, then we can also have a discrete RV that takes on a fractional value.
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c. When investigating a RV, it is useful to look for its range: the set of values

that it takes on with positive probability. For example, the range of X in example

(1.1) is {3,−2}, and the range of X in example (1.3) is {N,N + 1, N + 2, · · · }.
d. To specify a discrete random variable, we describe its probability mass function:

P (X = k) for all k such that P (X = k) > 0. From a RV point of view, it is completely

specified when its probability mass distribution is known. There are two ways to do

this: we either describe an experiment where X represents some quantity from that

experiment; or we just abstractly specify the distribution of X and look for some

examples in reality that fit the distribution. An example of the second approach

would be to specify

P (X = k) = e−λ
λk

k!
, k = 0, 1, 2, · · ·

e. One should always check when given a probability mass function that it is

valid. There are two conditions:

0 ≤ P (X = k) ≤ 1,∀k∑
k

P (X = k) = 1.

2.2 Some elementary probability identity

Here we assume that X is a discrete RV taking values on 0, 1, 2, · · · . Then for all

integers a ≤ b:

P (X < b) = P (X ≤ b+ 1)

P (X > a) = P (X ≥ a− 1)

P (a < X < b) = P (X < b)− P (X ≤ a)

P (a ≤ X < b) = P (X < b)− P (X < a)

P (a ≤ X ≤ b) = P (X ≤ b)− P (X < a).

2.3 Function of random variables

Let g : R → R and X a real valued RV. Then g(X) is also a RV. What is the

distribution of g? If X is a discrete RV then we also have g(X) is a discrete RV.

Moreover

P (g(X) = k) =
∑

j:g(j)=k

P (X = j).
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Example 2.2. Let X be a RV with distribution P (X = 3) = 1/3 and P (X =

−2) = 2/3. Then X2 is a discrete RV with distribution P (X2 = 9) = 1/3 and

P (X = −2) = 2/3.

Example 2.3. Let X be a RV with distribution P (X = 1) = 1/6, P (X = −1) =

1/3, P (X = 2) = 1/2. Then X2 is a discrete RV with distribution P (X2 = 1) = 1/2

and P (X2 = 4) = 1/2.
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