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1 Definition and examples

1.1 Motivating example

Suppose we toss a coin twice. What is the probability that we get 2 tails? From the

above, it’s 1
4
. Suppose, however, that you know the additional information that the

first toss is a tail. We ask the same question: what is the probability that we get

2 tails? Clearly it’s no longer 1
4
, because for you, the set of all possible events have

changed. Namely, the outcomes {HH}, {HT} are no longer possible.

Concretely, the set of all possible outcomes now are:

{TT}, {TH}.

Thus the probability that you get 2 tails is 1
2
. We say: the probability that we get 2

tails, conditioned on the first toss being a tail, is 1
2
.

1.2 Conditional probability

Definition 1.1. Let A,B be events. If P (A) > 0, the probability of B conditioned

on A, or B given A, denoted P (B|A), is defined as:

P (B|A) =
P (B ∩ A)

P (A)
.

The interpretation is that we have already had the knowledge that A happened.

So the probability of the event B happening, given that A has happened, should be

calculated as given in the definition.
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Example 1.2. We toss a die. What is the probability that we get a 6, given that we

know the toss is even?

Ans: Let A be the event that we get an even toss, B the event that we get a 6

(when you get used to this, you don’t have to explicitly name out the events). Then

P (A) = 1/2, P (A ∩B) = P (B) = 1/6. Thus P (B|A) = 1/3.

1.3 How to tell you’re dealing with a conditional probability

question

The key signal to using conditional probability, rather than probability is the persence

of the word if in a question. Note that many questions may not spell out the con-

ditional probability key word for you, assuming the understanding of the context.

Consider the following example:

Example 1.3. Joe is 80 % sure he places his key in one of the two pockets of his

jacket. He is 40 % sure he places in his right pocket and 40 % sure he places it in his

left pocket. If he didn’t find the key in his left pocket, what is the probability it is in

the other pocket?

Ans: Let L be the event the key is in the left pocket, R the event the key is in the

right pocket. Then we’re asked for P (R|Lc). We have

P (R|Lc) =
P (RLc)

P (Lc)
=

P (R)

1− P (L)
=

2

3
.

Remark: The question may be a bit confusing, as we did NOT use the informa-

tion that Joe is 80 % sure he places the key in one of the pockets. Turns out this

information is redundant, because we can deduce it from the information:

P ( In jacket) = P ( Left pocket) + P ( Right pocket) = .4 + .4 = .8

Alternative question:

Example 1.4. Joe is 80 % sure he places his key in one of the two pockets of his

jacket. If the key is in his jacket, he is 30 % sure he places in his right pocket and 70

% sure he places it in his left pocket. If he didn’t find the key in his left pocket, what

is the probability it is in the other pocket?
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2 The multiplication rule

Let E1, E2, · · · , En be events. Observe that by definition of conditional expectation:

P (E1E2 · · ·En) = P (En|E1E2 · · ·En−1)P (E1E2 · · ·En−1).

Now

P (E1E2 · · ·En−1) = P (En−1|E1E2 · · ·En−2)P (E1E2 · · ·En−2).

Repeating this procedure we have the following multiplication rule

P (E1E2 · · ·En) = P (E1)P (E2|E1)P (E3|E1E2) · · ·P (En|E1E2 · · ·En−1).

The multiplication allows us to compute the intersection of event, or events of the

type A and B. Usually you intuitively “multiply” “probability” of A with “probabil-

ity” of B to get probability of A and B, even in situations where these events may not

be independent. Surprisingly you still get the right result. The reason is accidentally

you have used the multiplication rule without realizing it, and the “probability” you

used is actually conditional probability. The following examples will demonstrate.

Example 2.1. An urn has 12 balls, 8 of which are white and the rest are blue. We

select 4 balls without replacement. What is the conditional probability that the 1st and

3rd ball are white, given that there are 3 white balls selected among the 4? Do the

same problem where we select the balls with replacement.

Ans: We’re looking for P (W1W3|3W ). By definition

P (W1W3|3W ) =
P (W1W3, 3W )

P (3W )
.

We have

P (3W ) =

(
8
3

)(
4
1

)(
12
4

) .

Now

P (W1W3, 3W ) = P (W1W2W3B4) + P (W1B2W3W4).

We calculate 1 term in the RHS above for demonstration.

P (W1B2W3W4) = P (W4|W1B2W3)P (W3|W1B2)P (B2|W1)P (W1).
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We can calculate all the terms in the RHS above.

P (W1) =
8

12
;

P (B2|W1) =
4

11
;

P (W3|W1B2) =
7

10
;

P (W4|W1B2W3) =
6

9
.

Example 2.2. Again consider the problem of 10 people picking their hats at random.

We want to compute P (E1E2). This answer is 8!
10!

= 1
90

. You may also reason the

probability that the first person gets his right hat is 1
10
. After the first person gets

his right hat, then the probability the second person gets his right hat is 1
9
. Thus

the probability that they both get their right hats is 1
9

1
10

= 1
90

. You have used the

multiplication rule:

P (E1) = 1/10, P (E2|E1) = 1/9, P (E1E2) = P (E2|E1)P (E1) = 1/91/10 = 1/90.

2.1 Application

The multiplication rule illustrates an important idea in computing probability of an

event: by conditioning on other events, the problem might become more tractable or

easier to handle. Of course this doesn’t always have to be the case, but at least it

provides us with some alternatives in solving a problem.

We illustrate this technique by considering the problems of n people randomly

picking their hats. Now the question is what is the probability of exactly k people

having correct hats?

Let F be the event that none of the k + 1th to nth people got their right hat.

Using the same notation as before, we compute P (E1E2 · · ·EkF ). Then the answer

we want will be
(
n
k

)
P (E1E2 · · ·EkF ) since out of n people we choose k to have their

correct hats, and the rest to have incorrect hats. The probability of any such event

is equal.

First of all, note that

P (E1E2 · · ·EkF ) = P (F |E1E2 · · ·Ek)P (E1E2 · · ·Ek).

How to compute P (F |E1E2 · · ·Ek)? Conditioning on the event that the first k get

their right hats, you can easily see that the probability of the rest of n−k getting the
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wrong hats is the same as (without any conditioning) the probability of n− k people

getting their wrong hats, which we found out to be

n−k∑
j=2

(−1)j
1

j!
.

Now we just have to compute P (E1E2 · · ·Ek). Using the multiplication rule, we

see that

P (E1E2 · · ·Ek) = P (E1)P (E2|E1)P (E3|E1E2) · · ·P (Ek|E1E2 · · ·Ek−1).

Now P (E1) = 1
n

as we have explained. Given that the first person got his correct

hat, the probability the second person got his correct hat is just 1
n−1

. Similarly, given

the first 2 got their correct hats, the probability the 3rd got his correct has is 1
n−2

.

Thus

P (E1E2 · · ·Ek) =
1

n(n− 1) · · · (n− k)
=

(n− k)!

n!
.

So the original probability is

P (exactly k correct hats) =

(
n

k

)
P (E1E2 · · ·EkF ) =

(
n

k

)
(n− k)!

n!

n−k∑
j=2

(−1)j
1

j!

=

∑n−k
j=2 (−1)j 1

j!

k!

Note that there is a shorter way to solve this problem, by counting and using the

result we got before. We count how many ways we can assign the right hats to the first

k people and wrong hats to the last n−k. This is not an easy combinatorics problem

to solve fresh, but using our result last time, we see that there are (n−k)!
∑n−k

j=2 (−1)j 1
j!

ways to assign wrong hats to n−k people (since the probability of them getting wrong

hats is
∑n−k

j=2 (−1)j 1
j!

and the sample size is (n− k)!, being the total number of ways

we assign hats to n − k people). There is only 1 way to assign correct hats to the

first k people, thus the probability

P (E1E2 · · ·EkF ) =
(n− k)!

∑n−k
j=2 (−1)j 1

j!

n!
,

as the original sample size is n!. This is exactly what we got above. So conditioning

may not be the shortest way to solve a problem, but it gives us some alternative

techniques. You should also look at the above example as illustrating thinking in

conditional probability terms.
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3 P (A|B) versus P (AB)

It is easy to get confused between P (A|B) and P (AB) ? What is their difference (in

meaning) and how do we know when to use which one? In meaning, P (A|B) asks

for the probability that A happens, if you know B has happened. P (AB) asks for

the probability that A and B happen together. Thus the difference is in terms of

information. In P (AB) you do not know whether B has happened or not. In P (A|B)

you do.

(It may be helpful, in computing P (A|B) to imagine B has happened before A,

even though this may not be the case in reality.)

Again, if there is a word if then it is a signal to use conditional probability.

Otherwise it would be a regular P (AB) computation.

Finally to illustrate the difference, we look at the hat problem again. There we

can consider P (E1E2) and P (E2|E1). To compute P (E1E2), we look at the events

both 1st and 2nd people getting their right hats at the same time, among the n hats.

We explained that there are
(
n
2

)
2! ways of choosing 2 hats out of n, with regards to

order. Thus the probability P (E1E2) is 1
n(n−1)

.

On the other hand P (E2|E1) is simply 1
n−1

because after the 1st person got his

right hat, the problem is as if we look at n− 1 people choosing their hats, and asking

for the 2nd person (the 1st among the remaining n− 1) choosing his right hat.

4 Bayes’ rule

From the definition of conditional probability, we have

P (B|A)P (A) = P (B ∩ A).

It is clear that

P (A|B) =
P (B ∩ A)

P (B)
.

Thus

P (A|B) =
P (B|A)P (A)

P (B)
.

We also have

P (B) = P (BA) + P (BAc) = P (B|A)P (A) + P (B|Ac)P (Ac).
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Therefore we conclude

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
. (1)

This formula is called the Baye’s rule. At first glance this is pure mathemati-

cal manipulation. But it has an important implication: that of switching what we

conditioned on. An example would illustrate what this means.

It is well-known that medical test is not 100% reliable. That is suppose you test

for a disease, which has 1% chance of happening, then even if the test comes out

negative, it doesn’t mean you have 0% of contracting the disease. Instead, with a

very small probability, it could be a false negative. Concretely, suppose that if you

indeed have the disease, then there is 98% chance that the test comes out positive,

and 2% negative. However, suppose you don’t have the disease, there is 95% chance

the test comes out negative, and 5% chance it comes out positive. Now you go for

the test, and it comes out negative. What is the probability that you contract the

disease?

Ans: Let A be the event that you contract the disease and B be the event that

the test is positive. Then we have

P (B|A) = .98, P (Bc|A) = .02, P (B|Ac) = .05, P (Bc|Ac) = .95.

The question asks for P (A|Bc). Thus you see how Bayes’ rule is appropriate for

the situation. Can you figure out what it is?
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