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1 Some elementary propositions

Some consequences of the axioms of probilities are as followed:(Note that they are

“natural” in the sense that one would expect them to be true anway, but we can give

rigorous proofs based on the axioms)

1.

P (Ec) = 1− P (E).

Proof: Since Ec ∪ E = S, Ec ∩ E = ∅,

1 = P (S) = P (Ec ∪ E) = P (Ec) + P (E).

2. If E ⊆ F then P (E) ≤ P (F ).

Proof: We use the notation F\E := F ∩ Ec to denote the members of F that is

not in E. Then E ∩ F\E = ∅, E ∪ F\E = F and P (F\E) ≥ 0. Thus

P (F ) = P (E) + P (F\E) ≥ P (E).

3. The (simple) inclusion - exclusion principle:

P (E ∪ F ) = P (E) + P (F )− P (EF ).

This principle generalizes axiom 3. Here we do not require E and F to be mutually

exclusive. If they are, then P (EF ) = 0 and we recover axiom 3.

Proof: Note that F\EF = F\E and thus E ∩ (F\EF ) = ∅, E ∪ (F\EF ) =

E ∪ (F\E) = E ∪ F . Therefore,

P (E ∪ F ) = P (E ∪ (F\EF )) = P (E) + P (F\EF ).
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Again recognize that (F\EF ) ∩ EF = ∅ and EF ∪ (F\EF ) = F . Thus

P (F ) = P (F\EF ) + P (EF ).

Putting these together we get the proposition.

2 The general inclusion exclusion principle

Generally we have

P (E1 ∪ E2 ∪ · · · ∪ En) =
n∑

i=1

P (Ei)−
∑
i1<i2

P (Ei1Ei2)

+ (−1)r+1
∑

i1<i2<···<ir

P (Ei1Ei2 · · ·Eir) + · · ·

+ (−1)n+1P (E1E2 · · ·En),

or more compactly

P (∪n
i=1Ei) =

n∑
r=1

(−1)r+1
∑

i1<i2<···<ir

P (Ei1Ei2 · · ·Eir).

Remark: The summation
∑

i1<i2<···<ir
P (Ei1Ei2 · · ·Eir) is taken over all possible(

n
r

)
subsets of size r of the set {1, 2, · · · , n}. The notation i1 < i2 < · · · < ir is to

make sure we do not repeat the summation over a subset after we have selected it,

which serves the same purpose as a combination. For example, if n = 5, r = 3, then

we only sum over the subset {1, 2, 4} but not the subset {4, 1, 2} or {2, 4, 1} etc., as

dictated by the requirement that 1 < 2 < 4 or by the understanding that we are

dealing with a combination here.

Proof: We proceed by induction. The case n = 2 as been proven above for the

simple principle. Generally suppose the principle is true for n. We show it is true for

n + 1. But note that we can write ∪n+1
i=1 Ei = ∪ni=1Ei ∪ Ei+1. Thus

P (∪n+1
i=1 Ei) = P (∪ni=1Ei) + P (Ei+1)− P (∪n

i=1Ei ∩ En+1)

= P (∪ni=1Ei) + P (Ei+1)− P (∪ni=1(Ei ∩ En+1))
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by the base case n = 2. Apply the induction hypothesis on P (∪n
i=1Ei) we have

P (E1 ∪ E2 ∪ · · · ∪ En) =
n∑

i=1

Ei −
∑

i1<i2≤n

P (Ei1Ei2)

+ (−1)r+1
∑

i1<i2<···<ir≤n

P (Ei1Ei2 · · ·Eir) + · · ·

+ (−1)n+1P (E1E2 · · ·En),

Apply the induction hypothesis on P (∪ni=1(Ei ∩ En+1) we have

−P (∪ni=1(Ei ∩ En+1) = −
n∑

i=1

P (Ei ∩ En+1) +
∑

i1<i2≤n

P (Ei1Ei2En+1)

+ (−1)r+2
∑

i1<i2<···<ir≤n

P (Ei1Ei2 · · ·EirEn+1) + · · ·

+ (−1)n+2P (E1E2 · · ·EnEn+1),

(note the sign change on the RHS).

But then you see all the signs match up right, for example

−
∑

i1<i2≤n

P (Ei1Ei2Ei3)−
n∑

i=1

P (Ei ∩ En+1) = −
∑

i1<i2≤n+1

P (Ei1Ei2)∑
i1<i2<i3≤n

P (Ei1Ei2) +
∑

i1<i2≤n

P (Ei1Ei2En+1) =
∑

i1<i2<i3≤n+1

P (Ei1Ei2Ei3) · · ·

so we have verified the formula for the case n + 1.

2.1 Consequence - Bounds for probability of union of events

A rather useful consequence of the general inclusion - exclusion principle is to provide

bounds for union of events. Specifically:

P (∪ni=1Ei) ≤
n∑

i=1

P (Ei)

P (∪ni=1Ei) ≥
n∑

i=1

P (Ei)−
∑

i1<i2≤n

P (Ei1Ei2)

P (∪ni=1Ei) ≤
n∑

i=1

P (Ei)−
∑

i1<i2≤n

P (Ei1Ei2) +
∑

i1<i2<···<i3≤n

P (Ei1Ei2Ei3) · · ·
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This is very similar to the oscillating series you learned in Calculus 2, for example

x =
∑∞

n=1(−1)n+1 1
n
. There you showed that x ≤ 1, x ≥ 1 − 1

2
, x ≤ 1 − 1

2
+ 1

3
and

so forth. The only difference is here we deal with a finite sum; but one can imagine

that similar bounds hold for the expression P (∪∞i=1Ei), from which we indeed get an

infinite oscillating sum.

One can prove these bounds by induction and use the inclusion-exclusion principle

for the base case. We’ll prove the first 2 inequalities as examples.

Ex1: Prove

P (∪ni=1Ei) ≤
n∑

i=1

P (Ei).

For n = 2, since P (E1 ∪ E2) = P (E1) + P (E2) − P (E1E2) the inequality holds.

Assume the inequality holds for n. Then

P (∪n+1
i=1 Ei) ≤ P (∪n

i=1Ei) + P (En+1) ≤
n+1∑
i=1

P (Ei).

Ex2: Prove

P (∪ni=1Ei) ≥
n∑

i=1

P (Ei)−
∑

i1<i2≤n

P (Ei1Ei2).

For n = 3, since

P (∪3i=1Ei) =
3∑

i=1

P (Ei)−
∑

i1<i2≤3

P (Ei1Ei2) + P (E1E2E3),

the inequality holds.

Assume the inequality holds for n. Then

P (∪n+1
i=1 Ei) ≥ P (∪n

i=1Ei) + P (En+1)− P (
(
∪ni=1 Ei

)
En+1).

We have

P (∪ni=1Ei) ≥
n∑

i=1

P (Ei)−
∑

i1<i2≤n

P (Ei1Ei2)

by the induction hypothesis,
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and

P (
(
∪ni=1 Ei

)
En+1) = P (∪ni=1

(
EiEn+1

)
)

≤
n∑

i=1

P (EiEn+1),

by the first inequality we proved. Putting these two facts together we get that the

second inequality holds for the case n + 1.

2.2 Interpretation of the bounds

These bounds for the probability of the union of the events have interpretations

that corresponds to our intuition. For example, the first one says that if we have n

event (say n = 10) each has very small probability of happening (relative to n, say

P (Ei) = 10−4, i = 1, · · · , 10), then the probability of any of them happening is also

small (since P (∪10i=1Ei) ≤ 10−3 by the first inequality). In other words, the rarity of

individual events translate to the rarity of the collection of events as long as there are

not too many of them.

The second one says that if we have n event, again say n = 10, such that the sum

of their probability is large (say
∑10

i=1Ei = 1). Then as long as, the probability of any

of two of them happening together is small say P (EiEj) = 10−4, then the probability

of any of them happening is also large (more than 1− 45
104

).

3 Sample spaces having equally likely outcomes

3.1 Assigning probabilities

Consider the experiment of tossing a die. Suppose we have no reason to suspect that

the die is loaded, then we must conclude that each outcome is equally likely. That is

P ({1}) = P ({2}) = · · · = P ({6}).

Since these outcomes are mutualyl exclusive and their union is the sample space

S, by the axioms of probability, we have

1 = P (S) =
6∑

i=1

P ({i}) = 6P ({i}), i = 1, · · · , 6.
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Thus it is reasonable to assign

P ({1}) = P ({2}) = · · · = P ({6}) =
1

6
.

This is the basis for assigning 1
2

= P ({H}) = P ({T}) if we believe a coin is fair

or 1
52

to be the probability of drawing a specific card in a deck of card, for example.

More abstractly, for events that are composed of elementary outcomes, as long as

we assume each out come is equally likely, we can conclude

P (E) =
n(E)

n(S)
,

where n(E) denotes the number of outcomes in event E and n(S) denotes the total

number of outcomes in the experiment. You’ll quickly see how the combinatorics

techniques we develop in the previous lecture comes to play in computing these prob-

abilities.

3.2 A basic example

Ex1: Suppose we toss a coin twice. Compute the probabilities of : a) The first toss

is H b) Both tosses are T c) We get a head and a tail, in either order.

Note: Intuitively, you’ll give the answer as a) 1/2 b) 1/4 c) 1/2. When asked why,

you’ll probably say something about the coin being fair, and say for question b) the

two tosses are independent thus the probability of 2 tails is 1/2× 1/2 = 1/4. I hope

you see that these answers lack rigorous justification. Plus we did not discuss the

notion of independence. And the pseudo answer given above is a perfect example of

mixing the order of arguments. After we cover independence of events, you’ll see that

BECAUSE that the probability of both tosses are T is 1/4 (and similar computations)

we can CONCLUDE that the two tosses are independent, not the other way around.

The rigorous ways to answer these question is to consider the sample space of

tossing a coin twice. It is

S =
{
{HT}, {TH}, {TT}, {HH}

}
and we assume each outcome is equally likely (again, on the basis of our belief about

the coin being fair, thus no outcome should be more likely than other - You may even

say that when we say a coin is fair, what we have in mind is exactly equally outcome.)

Thus

P ({HT}) = P ({TH}) = P ({TT}) = P ({HH}) =
1

4
.
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Now we can easily answer

P (First toss is head) = P ({HT} ∪ {HH}) =
2

4
=

1

4

P ({TT}) =
1

4

P (Head and tail, either order) = P ({HT} ∪ {TH}) =
2

4
=

1

2
.

3.3 Switching sample space for equally likely events

Consider the following question: Suppose we toss a coin 4 times and all outcomes are

equally likely. What is the probability that the third coin is H?

There are 2 ways to answer. You could divide the number of outcomes with H

in the 3rd toss (8 total) by the number of total outcomes (16) to get 1/2, a rather

unsurprising answer ! Or you could say there is only two possibilities for the 3rd toss,

H or T and these are equally likely, so the probability must be 1/2. Of course the

2nd answer is correct, but note that implicitly there you have changed the sample

space. Your sample space consists only of the outcomes of the 3rd toss whereas the

original sample space has the outcomes of all 4 tosses. This technique of swithching

sample space (which many of us would employ without realizing it) is of course valid,

in computing probability of equally likely event. The important conclusion to derive

here is that suppose we run n experiments and all of the outcomes are equally likely,

then the outcomes of a particular experiments among the n are also equally likely.

Here’s another example where we employ this technique in a less obvious manner.

Suppose there are n people in the room and they toss their hats in a box, mix those

up and randomly draw out the hats. What is the probability that none of them get

their correct hat?

Ans: We will give the answer to this question later. For now, we’re interested in

computing the following: let Ei be the event that the i-th person got his correct hat.

We want to compute P (Ei), P (EiEj), P (EiEjEk) · · · .
When we say people randomly draw out the hats, it also means all outcomes are

equally likely.

Observe that it is equally likely for the ith person to choose any hats among the

n. Thus P (Ei) = 1
n
. There are different ways to compute P (Ei), with different

interpretations. Here’s another good observation: P (Ei) = P (Ej) because there

should be no difference in the chance of the ith or the jth person getting their correct
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hats. However, we DO NOT know that
∑n

i=1 P (Ei) = 1. So we CANNOT draw any

conclusion about P (Ei) from this observation.

To compute P (EiEj) note that there are
(
n
2

)
2! = n(n − 1) ways for 2 person to

select 2 hats, and each of these is equally likely. Thus P (EiEj) = 1
n(n−1) .

Again observe that P (EiEj) = P (EjEk) and there are
(
n
2

)
pairs of these. But note

how P (EiEj) 6= 1

(n
2)

= 2
n(n−1) . It is because we DO NOT have

∑
i1<i2

P (Ei1i2) = 1.

Similarly you can see that P (EiEjEk) = 1
n(n−1)(n−2) etc.

Now we can answer the original question. Note that

P (no one get their correct hat) = P (Ec
1E

c
2 · · ·Ec

n) = 1− P (E1 ∪ E2 ∪ · · · ∪ En).

By the inclusion exclusion principle

P (E1 ∪ E2 ∪ · · · ∪ En) =
n∑

i=1

P (Ei)−
∑
i1<i2

P (Ei1Ei2)

+
∑

i1<i2<i3

P (Ei1Ei2Ei3) + · · ·+ (−1)n+1P (E1E2 · · ·En)

= 1−
(
n

2

)
1

2!
(
n
2

) +

(
n

3

)
1

3!
(
n
3

) + · · ·+ (−1)n+1 1

n!

= 1− 1

2!
+

1

3!
+ · · ·+ (−1)n+1 1

n!
,

where we have used the observation that P (EiEj) = P (EjEk) etc. Thus

P (no one get their correct hat) =
n∑

k=2

(−1)k
1

k!
.
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