
Math 485

Financial modeling in discrete time

A. Framework for modeling uncertain markets

Consider a market in M assets A model will do two things, at least:

1. It will specify all possible future histories, that is, outcomes, of the market.
Notation:

Ω = the set of market histories.

2. For each asset i, future market outcome ω, and future time t, it will define
a price S

(i)
t (ω) for a unit of asset i.

Example: One period, one asset, binomial model. Despite its
simplicity, even naiveté, the following model is basic to the course!

• The time periods of the model are t = 0 (today, the beginning of the
period) and t = 1, some unit of time later (the end of the period).
• In the first period, there are two possible market outcomes only, a

market upswing, which we denote u, or a market downswing, denoted d.
• If an upswing occurs, the asset return is g.

If a downswing occurs, the asset return is ` < g.

Mathematically this translates to:

Ω
4
= {u, d}

S0
4
= today’s price, read from market.

S1(u)
4
= gS0;

S1(d)
4
= `S0.

Example: Extension to two periods:
• Periods t = 0, t = 1, t = 2.
• In each period, an upswing or downswing from previous market state.
• In each period, upswing implies return g, downswing return `.
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Model:

Ω
4
= {(u, u), (u, d), (d, u), (d, d)}

S0
4
= today’s price;

S1(u, u) = S1(u, d)
4
= gS0

S1(d, u) = S1(d, d)
4
= `S0;

S2(u, u)
4
= g2S0

S2(u, d) = S2(d, u)
4
= g`S0

S2(d, d)
4
= `2S0

B. Discrete probability spaces

Discrete probability spaces are a framework for modeling an experiment with
a random outcome, when the number of possible outcomes is finite. To define
a discrete probability space:

1. Define the outcome space to be the set of all possible outcomes.
• Notation: Ω = {ω1, ω2, . . . , ωN}.
• Terminology: Subsets of Ω are called events. To say, of a trial, “event A
occurs” means “the trial’s outcome belongs to subset A.”

2. To each ωi in Ω, assign a number pi, representing the probability that
ωi is the outcome: Require:

(a) for each i, 0 ≤ pi ≤ 1;

(b)
N∑
1

pi = 1.

For each event A, define

IP (A)
4
=
∑
ωi∈Ω

pi.

More terminology:
• IP is called a probability measure on the set of events.
• Ω and IP together constitute a probability space.

Remark: IP ({ωi}) = pi. We often write this as IP (ωi).
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The entire construction goes through in exactly the same way if Ω is
countably infinite: Ω = {ω1, ω2, . . .}. Requirement (b) becomes

∞∑
1

pi = 1.

Probability spaces in general. The probability measures, as just defined
on finite or countably infinite Ω, satisfy the finite additivity property: if
A1, A2, . . . , Ak are disjoint events,

IP (A1 ∪ · · · ∪ Ak) =
k∑

i=1

IP (Ai). (1)

If Ω is countably infinite, IP also is countably additive: if A1, A2, . . . , are
disjoint events,

IP (A1 ∪ A2 ∪ · · ·) =
∞∑
i=1

IP (Ai). (2)

In the general definition of a probability space, identities (1) and (2) are
taken as axioms.

Example. Adding probabilities to the two period, binomial market
model.

Recall that in this case Ω = {(u, u), (u, d), (d, u), (d, d)}
Model I: After research and observation we think

IP ((u, u)) = 1
2
, IP ((u, d)) = 1

4
, IP ((d, u)) = 1

8
, IP ((d, d)) = 1

8
.

Problem. Let A be the event of upswing in the first period. Find IP (A).

Note that A = {(u, u), (u, d)}. Thus IP (A) = IP ((u, u)) + IP ((u, d)) =
1/2 + 1/4 = 3/4.

Model II: (Random Walk, Bull Market) Assume the probability of an
upswing in each period is 3/4 and market movements in different periods are
independent. Then
IP ((u, u)) = (3

4
)2, IP ((u, d)) = 3

4

(
1
4

)
,

IP ((d, u)) = 1
4

(
3
4

)
, IP ((d, d)) = (1

4
)2.

Problem. Find IP (at least one upswing).
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If B is the event of at least one upswing in the two periods, the comple-
ment Bc of B is the event of two downswings, which is the singleton event
{(d, d)}. Thus IP (B) = 1− IP (Bc) = 1− (1/8) = 7/8.

C. Discrete Random Variables

Object: Model an experiment whose random outcome is a real number in
the set E = {y1, . . . , yM}.

Approach: Label the outcome of a hypothetical trial by X. X is an
example of a random variable. The complete description of the behavior
of X is given by its probability mass function

pX(y), y ∈ E ,

where for each y, pX(y) gives the probability that X equals y. We write also
IP (X=y).

Of course, we require
∑

y∈E pX(y) = 1.
For any subset U of real numbers, we define

IP (X ∈ U)
4
=
∑
y∈U

pX(y).

Expectation

The expected value or mean of X is

E [X]
4
=
∑
y∈E

ypX(y).

The law of the unconscious statistician says that for any function g:

E [g(X)] =
∑
y∈E

g(y)pX(y).

Example: X is Bernoulli(p) if IP (X=1) = p, (
¯
X=1) = p. Then

µ = E[X] = 0 · (1− p) + 1 · p = b.

Var(X)
4
= E

[
(X − µ)2

]
= E[X2]− p2 = p(1− p).
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Functions on probability spaces give r.v.’s

In this course, random variables will often arise as functions defined on a
probability space. Here is an example.

Example: This is the random walk, bull market model continued, but now
we add prices of a risky asset according to:

Ω
4
= {(u, u), (u, d), (d, u), (d, d)}

S1(u, u) = S1(u, d)
4
= gS0

S1(d, u) = S1(d, d)
4
= `S0;

S2(u, u)
4
= g2S0

S2(u, d) = S2(d, u)
4
= g`S0

S2(d, d)
4
= `2S0

IP ((u, u)) = (
3

4
)2, IP ((u, d)) =

3

4

(
1

4

)
IP ((d, u)) =

1

4

(
3

4

)
, IP ((d, d)) = (

1

4
)2.

S1, the price at time 1, and S2 are random variables! We can compute
their probability mass functions from the probability measure IP .

For example, suppose S0 = 20, g = 1.05, ` = .95. Then S1((u, u)) =
S1(u, d) = 20(1.05) = 21 and S1((d, u)) = S1((d, d)) = 19.
The probability mass function of S1 is

p1(21) =
3

4
p1(19) =

1

4
.

Its expectation is E[S1] = 21(3/4) + 19(1/4) = 20.5.
For S2: S2((u, u)) = 20(1.05)2 = 22.05, S2((u, d)) = S2((d, u)) = 20(.95)(1.05) =

19.95, and S2((d, d)) = 20(.95)2 = 18.05.
The probability mass function and expectation of S2 are:

p2(18.05) =
1

16
, p2(19.95) =

6

16
, p3(22.05) =

9

16
.

E[S2] =
18.05

16
+

6(19.95)

16
+

9(22.05)

16
= 21.0125.
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