Math 485

Financial modeling in discrete time

A. Framework for modeling uncertain markets

Consider a market in M assets A model will do two things, at least:

1. It will specify all possible future histories, that is, outcomes, of the market. Notation:

$$
\Omega=\text { the set of market histories. }
$$

2. For each asset i, future market outcome ω, and future time t, it will define a price $S_{t}^{(i)}(\omega)$ for a unit of asset i.

Example: One period, one asset, binomial model. Despite its simplicity, even naiveté, the following model is basic to the course!

- The time periods of the model are $t=0$ (today, the beginning of the period) and $t=1$, some unit of time later (the end of the period).
- In the first period, there are two possible market outcomes only, a market upswing, which we denote u, or a market downswing, denoted d.
- If an upswing occurs, the asset return is g.

If a downswing occurs, the asset return is $\ell<g$.
Mathematically this translates to:

$$
\begin{aligned}
\Omega & \triangleq\{u, d\} \\
S_{0} & \triangleq \text { today's price, read from market. } \\
S_{1}(u) & \triangleq g S_{0} \\
S_{1}(d) & \triangleq \ell S_{0}
\end{aligned}
$$

Example: Extension to two periods:

- Periods $t=0, t=1, t=2$.
- In each period, an upswing or downswing from previous market state.
- In each period, upswing implies return g, downswing return ℓ.

Model:

$$
\begin{aligned}
\Omega & \triangleq\{(u, u),(u, d),(d, u),(d, d)\} \\
S_{0} & \triangleq \text { today's price; } \\
S_{1}(u, u) & =S_{1}(u, d) \triangleq g S_{0} \\
S_{1}(d, u) & =S_{1}(d, d) \triangleq \ell S_{0} ; \\
S_{2}(u, u) & \triangleq g^{2} S_{0} \\
S_{2}(u, d) & =S_{2}(d, u) \triangleq g \ell S_{0} \\
S_{2}(d, d) & \triangleq \ell^{2} S_{0}
\end{aligned}
$$

B. Discrete probability spaces

Discrete probability spaces are a framework for modeling an experiment with a random outcome, when the number of possible outcomes is finite. To define a discrete probability space:

1. Define the outcome space to be the set of all possible outcomes.

- Notation: $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right\}$.
- Terminology: Subsets of Ω are called events. To say, of a trial, "event A occurs" means "the trial's outcome belongs to subset A."

2. To each ω_{i} in Ω, assign a number p_{i}, representing the probability that ω_{i} is the outcome: Require:
(a) for each $i, 0 \leq p_{i} \leq 1$;
(b) $\sum_{1}^{N} p_{i}=1$.

For each event A, define

$$
\mathbb{P}(A) \triangleq \sum_{\omega_{i} \in \Omega} p_{i}
$$

More terminology:

- \mathbb{P} is called a probability measure on the set of events.
- Ω and \mathbb{P} together constitute a probability space.

Remark: $\mathbb{P}\left(\left\{\omega_{i}\right\}\right)=p_{i}$. We often write this as $\mathbb{P}\left(\omega_{i}\right)$.

The entire construction goes through in exactly the same way if Ω is countably infinite: $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}$. Requirement (b) becomes

$$
\sum_{1}^{\infty} p_{i}=1
$$

Probability spaces in general. The probability measures, as just defined on finite or countably infinite Ω, satisfy the finite additivity property: if $A_{1}, A_{2}, \ldots, A_{k}$ are disjoint events,

$$
\begin{equation*}
\mathbb{P}\left(A_{1} \cup \cdots \cup A_{k}\right)=\sum_{i=1}^{k} \mathbb{P}\left(A_{i}\right) \tag{1}
\end{equation*}
$$

If Ω is countably infinite, \mathbb{P} also is countably additive: if A_{1}, A_{2}, \ldots, are disjoint events,

$$
\begin{equation*}
\mathbb{P}\left(A_{1} \cup A_{2} \cup \cdots\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right) \tag{2}
\end{equation*}
$$

In the general definition of a probability space, identities (1) and (2) are taken as axioms.

Example. Adding probabilities to the two period, binomial market

 model.Recall that in this case $\Omega=\{(u, u),(u, d),(d, u),(d, d)\}$
Model I: After research and observation we think $\mathbb{P}((u, u))=\frac{1}{2}, \quad \mathbb{P}((u, d))=\frac{1}{4}, \quad \mathbb{P}((d, u))=\frac{1}{8}, \quad \mathbb{P}((d, d))=\frac{1}{8}$. Problem. Let A be the event of upswing in the first period. Find $\mathbb{P}(A)$.

Note that $A=\{(u, u),(u, d)\}$. Thus $\mathbb{P}(A)=\mathbb{P}((u, u))+\mathbb{P}((u, d))=$ $1 / 2+1 / 4=3 / 4$.

Model II: (Random Walk, Bull Market) Assume the probability of an upswing in each period is $3 / 4$ and market movements in different periods are independent. Then
$\mathbb{P}((u, u))=\left(\frac{3}{4}\right)^{2}, \quad \mathbb{P}((u, d))=\frac{3}{4}\left(\frac{1}{4}\right)$,
$\mathbb{P}((d, u))=\frac{1}{4}\left(\frac{3}{4}\right), \quad \mathbb{P}((d, d))=\left(\frac{1}{4}\right)^{2}$.
Problem. Find \mathbb{P} (at least one upswing).

If B is the event of at least one upswing in the two periods, the complement B^{c} of B is the event of two downswings, which is the singleton event $\{(d, d)\}$. Thus $\mathbb{P}(B)=1-\mathbb{P}\left(B^{c}\right)=1-(1 / 8)=7 / 8$.

C. Discrete Random Variables

Object: Model an experiment whose random outcome is a real number in the set $\mathcal{E}=\left\{y_{1}, \ldots, y_{M}\right\}$.

Approach: Label the outcome of a hypothetical trial by $X . X$ is an example of a random variable. The complete description of the behavior of X is given by its probability mass function

$$
p_{X}(y), \quad y \in \mathcal{E},
$$

where for each $y, p_{X}(y)$ gives the probability that X equals y. We write also $\mathbb{P}(X=y)$.

Of course, we require $\sum_{y \in \mathcal{E}} p_{X}(y)=1$.
For any subset U of real numbers, we define

$$
\mathbb{P}(X \in U) \triangleq \sum_{y \in U} p_{X}(y)
$$

Expectation

The expected value or mean of X is

$$
E[X] \triangleq \sum_{y \in \mathcal{E}} y p_{X}(y)
$$

The law of the unconscious statistician says that for any function g :

$$
E[g(X)]=\sum_{y \in \mathcal{E}} g(y) p_{X}(y) .
$$

Example: X is $\operatorname{Bernoulli}(p)$ if $\mathbb{P}(X=1)=p,(X=1)=p$. Then

$$
\begin{gathered}
\mu=E[X]=0 \cdot(1-p)+1 \cdot p=b . \\
\operatorname{Var}(X) \triangleq E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]-p^{2}=p(1-p)
\end{gathered}
$$

Functions on probability spaces give r.v.'s

In this course, random variables will often arise as functions defined on a probability space. Here is an example.
Example: This is the random walk, bull market model continued, but now we add prices of a risky asset according to:

$$
\begin{aligned}
\Omega & \triangleq\{(u, u),(u, d),(d, u),(d, d)\} \\
S_{1}(u, u) & =S_{1}(u, d) \triangleq g S_{0} \\
S_{1}(d, u) & =S_{1}(d, d) \triangleq \ell S_{0} \\
S_{2}(u, u) & \triangleq g^{2} S_{0} \\
S_{2}(u, d) & =S_{2}(d, u) \triangleq g \ell S_{0} \\
S_{2}(d, d) & \triangleq \ell^{2} S_{0} \\
\mathbb{P}((u, u)) & =\left(\frac{3}{4}\right)^{2}, \quad \mathbb{P}((u, d))=\frac{3}{4}\left(\frac{1}{4}\right) \\
\mathbb{P}((d, u)) & =\frac{1}{4}\left(\frac{3}{4}\right), \quad \mathbb{P}((d, d))=\left(\frac{1}{4}\right)^{2} .
\end{aligned}
$$

S_{1}, the price at time 1 , and S_{2} are random variables! We can compute their probability mass functions from the probability measure \mathbb{P}.

For example, suppose $S_{0}=20, g=1.05, \ell=.95$. Then $S_{1}((u, u))=$ $S_{1}(u, d)=20(1.05)=21$ and $S_{1}((d, u))=S_{1}((d, d))=19$.
The probability mass function of S_{1} is

$$
p_{1}(21)=\frac{3}{4} \quad p_{1}(19)=\frac{1}{4} .
$$

Its expectation is $E\left[S_{1}\right]=21(3 / 4)+19(1 / 4)=20.5$.
For $S_{2}: S_{2}((u, u))=20(1.05)^{2}=22.05, S_{2}((u, d))=S_{2}((d, u))=20(.95)(1.05)=$ 19.95 , and $S_{2}((d, d))=20(.95)^{2}=18.05$.

The probability mass function and expectation of S_{2} are:

$$
\begin{aligned}
& p_{2}(18.05)=\frac{1}{16}, p_{2}(19.95)=\frac{6}{16}, p_{3}(22.05)=\frac{9}{16} \\
& E\left[S_{2}\right]=\frac{18.05}{16}+\frac{6(19.95)}{16}+\frac{9(22.05)}{16}=21.0125
\end{aligned}
$$

