Math 300 Intro Math Reasoning Worksheet 08: Set Theory

(1) Let $F : \mathbb{N} \mathbb{N} \to \mathbb{N}$ be the function F(f) = f(0). Is F 1-1? is F onto?

Solution: F is not 1 - 1 since for example the function f(n) = 0 and $id_{\mathbb{N}}$ are different function as for example $f(1) = 0 \neq 1 = id_{\mathbb{N}}(1)$ but $F(f) = f(0) = 0 = id_{\mathbb{N}}(0) = F(id_{\mathbb{N}})$.

F is onto: Let $n \in \mathbb{N}$ WTP there is $f \in \mathbb{N}\mathbb{N}$ such that F(f) = n. Let f be the constant function f(x) = n. Then F(f) = f(0) = n.

(2) Let
$$f : \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x) = \begin{cases} 5x & x < 0 \\ x^2 & x \ge 0 \end{cases}$

- (1) What is $f \circ f$?
- (2) Show that f is invertible.

(3) Compute f^{-1}

Solution: For (1) we have that $f \circ f(x) = \begin{cases} 25x & x < 0 \\ x^4 & x \ge 0 \end{cases}$.

For 2, to see that f is invertible let us prove it is one to one and onto. To see it is one to one, let $x_1, x_2 \in \mathbb{R}$. Suppose that $f(x_1) = f(x_2)$ WTP $x_1 = x_2$. Let us split into cases:

- (1) If $f(x_1) = f(x_2) \ge 0$, then $x_1, x_2 \ge 0$ and therefore $x_1^2 = f(x_1) = f(x_2) = x_2^2$. Hence $x_1 = \pm x_2$. Since x_1, x_2 are positive, it follows that $x_1 = x_2$.
- (2) If $f(x_1) = f(x_2) < 0$, then $x_1, x_2 < 0$ and therefore $5x_1 = f(x_1) = f(x_2) = 5x_2$, hence $x_1 = x_2$.

It follows that f is 1-1. To see that f is onto, let $y \in \mathbb{R}$ WTP there is $x \in \mathbb{R}$ such that f(x) = y. If $y \ge 0$, let $x = \sqrt{y}$, then $x \ge 0$ and therefore $f(x) = x^2 = y$. If y < 0, let $x = \frac{y}{5}$, then x < 0 and f(x) = 5x = y as wanted.

Since f is one to one and onto, by a theorem from class it is invertible.

Finally, we compute $f^{-1}(y) = \begin{cases} \sqrt{y} & y \ge 0\\ \frac{y}{5} & y < 0 \end{cases}$.

(3) Find bijections:

- (1) $\mathbb{N}, (\mathbb{N} \setminus \{0, 1\}) \cup \{-5\}.$
- (2) \mathbb{R} , $(-\infty, 0] \cup (1, \infty)$.

Solution: For (1), define $f : \mathbb{N} \to \mathbb{N} \setminus \{0, 1\} \cup \{-5\}$ by $f(n) = \begin{cases} -5 & n = 0\\ n+1 & n \ge 1 \end{cases}$ for 2, define $f : \mathbb{R} \to (-\infty, 0] \cup (1, \infty)$ by $f(x) = \begin{cases} x & x \le 0\\ x+1 & x > 0 \end{cases}$.