Math 300 Intro Math Reasoning Worksheet 05: Set Theory

(1) Prove that for every three sets $A, B, C, A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. Solution. This is set equality. We prove it by a chain of equivalences. Let x be any element.

$$\begin{aligned} x \in A \cup (B \cap C) & \underset{\text{def of } \cup}{\longleftrightarrow} (x \in A) \lor (x \in B \cap C) \underset{\text{def of } \cap}{\longleftrightarrow} (x \in A) \lor ((x \in B) \land (x \in C)) \\ & \underset{\text{logical identity } \alpha \lor (\beta \land \gamma) \equiv (\alpha \lor \beta) \land (\alpha \lor \gamma)}{\longleftrightarrow} ((x \in A) \lor (x \in B)) \land ((x \in A) \lor (x \in C)) \\ & \underset{\text{def of } \cup}{\longleftrightarrow} (x \in A \cup B) \land (x \in A \cup C) \underset{\text{def of } \cap}{\longleftrightarrow} x \in (A \cup B) \cap (A \cup C) \end{aligned}$$

(2) Prove that $\mathbb{Z} = \{r \in \mathbb{R} \mid \mathbb{Z} \cap (r, r+1) = \emptyset\}$

[Hint: you may use the fact that for any $z \in \mathbb{Z}$ there are no integers between z and z+1. You may also use "round up" and "round down".]

Solution. We prove this set equality by double inclusion. Denote the set of the right hand side by A.

- (1) $\underline{\mathbb{Z}} \subseteq \underline{A}$: Let $z \in \mathbb{Z}$ WTP $z \in \mathbb{R}$. By separation (definition of A) WTP $z \in \overline{\mathbb{R}} \land \overline{\mathbb{Z}} \cap (z, z + 1) = \emptyset$. Clearly $z \in \mathbb{R}$. Suppose towards a contradiction that $\mathbb{Z} \cap (z, z + 1) \neq \emptyset$ and let $z' \in \mathbb{Z} \cap (z, z + 1)$, then z' is an integer strictly between an integer z and its successor, contradicting the "hint". Hence $z \in A$.
- (2) $A \subseteq \mathbb{Z}$: Let $r \in A$ WTP $r \in \mathbb{Z}$. By separation it follows that $r \in \mathbb{R}$ and that $\mathbb{Z} \cap (r, r+1) = \emptyset$. Suppose towards contradiction that $r \notin \mathbb{Z}$, then $r < \lceil r \rceil < r+1$ and by definition $\lceil r \rceil \in \mathbb{Z} \cap (r, r+1)$. Hence $\mathbb{Z} \cap (r, r+1) \neq \emptyset$, contradiction. Hence $r \in \mathbb{Z}$.

We define for every $A \subseteq \mathbb{R}$ and $r \in \mathbb{R}$

$$A + r = \{a + r \mid a \in A\}$$

- (3) Compute (not proof):
 - (1) $\{1,5\} + 0.5 = \{1.5, 5.5\}.$ (2) $\mathbb{N} + 1 = \mathbb{N}_+.$ (3) $\mathbb{Z} + 1 = \mathbb{Z}.$ (4) $\emptyset + r = \emptyset.$

(4) Prove or disprove:

- (1) If $A \subseteq B$ then $A + r \subseteq B + r$. **Solution.** Suppose that $A \subseteq B$. WTP $A + r \subseteq B + r$. Let $x \in A + r$. WTP $x \in B + r$. By the replacement principle, there is $a \in A$ such that x = a + r. Since $A \subseteq B$, $a \in B$. Therefore there is $b \in B$ such that x = b + r which again by replacement implies that $x \in B + r$.
- (2) If for some $r, s \in \mathbb{R}$, $A + r \subseteq B + s$ then $A \subseteq B$. Solution. This is false, for every $A = \{1\}, B = \{2\}$ then $\{1\} + 1 \subseteq \{2\} + 0$, however $\{1\} \not\subseteq \{2\}$.
- (3) A + 0 = A

Solution. Let us prove this set equality by a double inclusion.

- \supseteq : Let $a \in A$. WTP $a \in A + 0$. We have that a = a + 0, and therefore there is $x \in A$ such that x + 0 = a. By replacement, $a \in A + 0$.
- \subseteq For the other direction, suppose that $x \in A + 0$, the by replacement, there is $a \in A$ such that x = a + 0 = a and therefore $X \in A$.

Since we proved a double inclusion it follows that A + 0 = A

(5) Prove that for every $r \in \mathbb{R}$, $\mathbb{Q} + r = \mathbb{Q}$ if and only if $r \in \mathbb{Q}$.

Solution. Let $r \in \mathbb{R}$. Let us prove the equivalence by a double implication:

- ⇒ Suppose that $\mathbb{Q}+r = \mathbb{Q}$. WTR $r \in \mathbb{Q}$. Note that by replacement, $r = 0+r \in \mathbb{Q}+r$. By the set equality assumption $r \in \mathbb{Q}$.
- \Leftarrow Suppose that $r \in \mathbb{Q}$ and let us prove that $\mathbb{Q} + r = \mathbb{Q}$ by a double inclusion.
 - \subseteq Let $x \in \mathbb{Q} + r$. WTP $x \in \mathbb{Q}$. By replacement, there is $q \in \mathbb{Q}$ such that x = q + r. Since both q and r are rationals, $x \in \mathbb{Q}$.
 - \supseteq Let $x \in \mathbb{Q}$ WTP $x \in \mathbb{Q}+r$. Define q = x-r, the again since x, r are rationals, $q \in \mathbb{Q}$. Also note that x = q + r and therefore $x \in \mathbb{Q} + r$.

Since we proved a double inclusion it follows that $\mathbb{Q} = \mathbb{Q} + r$,