Math 300 Intro Math Reasoning Worksheet 03: Mathematical logic

(1) Prove the following statement: An integer is divisible by 5 if and only if its last digit is divisible by 5.

[Hint: To formally refer to the unit number of an integer n, decompose n = 10k + d where k is some integer and $0 \le d \le 9$. Then d is the unit digit of n.]

Solution Let *n* be an integer and suppose that n = 10k + d where $k, d \in \mathbb{Z}$ and $0 \le d \le 9$. Let us prove the statement by a double implication.

- \Rightarrow : If 5 divides n, then n = 5l for some $l \in \mathbb{Z}$ and therefore d = n 10k = 5l 10k = 5l5(l-2k). Since $l-2k \in \mathbb{Z}$, 5 divides d.
- \Leftarrow : If 5 divides d, then d = 5l for some $l \in \mathbb{Z}$. Then n = 10k + 5l = 5(2k + l) and since $2k + l \in \mathbb{Z}$, 5 divides n.

(2) Prove that for all integers n and m, if n is multiple of 6 or m is multiple of 9 then n^2m is a multiple of 9.

Solution: Suppose that n is a multiple of 6 or m is a multiple of 9. WTP n^2m is a multiple of 9. Let us split into cases:

- (1) If 6 divides n, then n = 6k for some $k \in \mathbb{Z}$ and therefor $n^2m = (6k)^2m = 9(4k^2m)$. Since $4k^2m \in \mathbb{Z}$, 9 divides n^2m .
- (2) If 9 divides m, then since m divides n^2m , it follows from what we proved in class that 9 divides n^2m .

In any case 9 divides n^2m . (3) Let a, b be integers with $b \neq 0$. Prove that any integer

solution to the quadratic equation $x^2 + ax + b = 0$ divides b.

Solution. Suppose z is an integer solution to $x^2 + ax + b = 0$. WTP z divides b. By our assumption, $z^2 + za + b = 0$, hence $b = -z^2 - za = z(-z - a)$. Since $-z - a \in \mathbb{Z}$, it follows that z divides b. (4) Let x, y be real numbers. Prove that if 0 < x < y then there

is $\epsilon > 0$ such that $\sqrt{x^2 + \epsilon} < y$.

Solution: Suppose that $x, y \in \mathbb{R}$ and 0 < x < y. WTP $\exists \epsilon > 0, \sqrt{x^2 + \epsilon} < y$.

(The next step of the proof is to define ϵ as we are in an existential proof so we do a side computation: $\sqrt{x^2 + \epsilon} < y$

 $x^2 + \epsilon < y^2 \epsilon < y^2 - x^2$ so we can choose $\epsilon = \frac{y^2 - x^2}{2}$ Back to the proof:

Define $\epsilon = \frac{y^2 - x^2}{2}$. Since x < y, and x, y are positive, $x^2 < y^2$ and therefore $y^2 - x^2 > 0$ and also $\epsilon = \frac{y^2 - x^2}{2} > 0$. Let us show that $\sqrt{x^2 + \epsilon} < y$. Indeed

$$x^{2} + \epsilon = x^{2} + \frac{y^{2} - x^{2}}{2} < x^{2} + (y^{2} - x^{2}) = y^{2}$$

Since y is positive, it follows that $\sqrt{x^2 + \epsilon} < \sqrt{y^2} = y$.