Math 300 Intro Math Reasoning Worksheet 01: Mathematical logic-Sols

(1) Prove that $P \implies Q$ and $\neg Q \implies \neg P$ are logically equivalent but that $P \implies Q$ and $Q \implies P$ are not logically equivalent.

Solutions:

(2) Prove that $\neg(P \land Q)$ and $(P \land \neg Q) \lor \neg P$ are logically equivalent.

(3) Prove that $P \iff Q \equiv (P \implies Q) \land (Q \implies P)$.

(4) Suppose that $\alpha \equiv T$ and $\beta \equiv F$, for each of the following determine if weather they are a tautology or a contradiction:

(1) $(\beta \wedge \alpha) \Rightarrow \beta$.

Solution: We claim that $(\beta \wedge \alpha) \Rightarrow \beta$ is a tautology. Suppose that v is a true value assignment, then $v(\beta) = F$ and also $v(\alpha \wedge \beta) = F$. Hence $v((\alpha \wedge \beta) \Rightarrow \beta) = T$.

- (2) $\beta \wedge (\alpha \Rightarrow \beta)$.
- (5) Decide whether the conclusion follows from the premises:
 - Pre. 1: $A \Rightarrow (B \Rightarrow C)$
 - Pre. 2: $\neg B \lor (\neg C)$
 - $\overline{\text{Conclusion}} \neg B \lor \neg A$.

Solution: It does follow. Suppose otherwise, that

$$(I)V(\sim B\lor \sim A) = F$$

but

$$(II)V(A \Rightarrow (B \Rightarrow C)) = T$$

 $(III)V(\neg B \lor (\neg C)) = T$.

Then by (I) V(A) = V(B) = T and by (III), V(C) = F. Thus $V(B \Rightarrow C) = F$ and $V(A \Rightarrow (B \Rightarrow C)) = F$, contradicting (II).