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Abstract. We characterize the Tukey order, the Galvin property/Cohesive
ultrafilters from [30] in terms of ultrapowers. We use this character-
ization to measure the distance between the Tukey order and other
well-known orders of ultrafilters. Secondly, we improve two theorems of
Kanamori [30] from the 70’s. We then study the point spectrum and the
depth spectrum of an ultrafilter, and give a simple answer to Kanamori’s
question [30, Question 2] starting from a supercompact cardinal. Finally,
we prove some consistency results regarding the depth spectrum of an
ultrafilter, starting from the optimal assumption of o(κ) = κ++, using
a Woodin-like surgery argument.

1. Introduction

Among the most elegant applications of set theory, involve ultrafilter [32,
36]. For example, in Topology, ultrafilters can be used to define the Stone-
Čech compactification, provide examples of topological spaces with special
properties, and in the Moore-Smith convergence of nets. The latter also
motivates the study of the Tukey order [41] which studies cofinal types of
partially ordered sets. The Tukey order was studied extensively, both on
general directed sets and on sets of the form (X ,⪯), (X ,⪯∗) where X is
a filter or an ideal, and ⪯ is either ⊇ or ⊆ respectively1. One remarkable
theorem due to Todorcevic [39] is that there are only 5 distinct cofinal types
of size at most ℵ1 which are provably different, but many cofinal types of
cardinality c.

The Tukey order on ultrafilters was first considered by J. Isbell [28] in
the 60’s. Isbell discovered a combinatorical criterion for the maximality of
ultrafilters in the Tukey order. This was later generalized to measurable
cardinals in [4].

Theorem 1.1 (Isbell). Let U be an ultrafilter on λ. The following are
equivalent:

(1) [2λ]<ω ≤T U .
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(2) P ≤T U for every directed poset P of size 2λ.
(3) There is a subset A ⊆ U of cardinality 2λ, such that the intersection

of every infinite subset of A is not in the ultrafilter.

Then Isbell [28] and independently Juhasz [29] constructed ultrafilters
meeting the above criterion, using long independent families. There have
been several constructions of such ultrafilter (see for example [40, 21, 33]).

The combinatorical criterion in (3) was independently studied in the 70’s
by F. Galvin [1] and A. Kanamori [30], under different names, as a weak
form of regularity of ultrafilters.

Definition 1.2 (Kanamori). An ultrafilter U on κ is (λ, µ)-cohesive if for
every A ∈ [U ]λ, there is B ∈ [A]µ such that

⋂
B ∈ U .

To see the translation, note that Isbell’s criterion (3) translates to U not
being (2λ, ω)-cohesive. In recent developments in Prikry-type forcing theory
due to the author, Gitik, Garti and Poveda [10, 11, 12, 26, 8], cohesiveness
was used under (yet) a different name- the Galvin property- to characterize
certain intermediate models; the statement that U is (λ, µ)-cohesive is de-
noted in there by Gal(U, µ, λ). These results led to the investigation of the
Galvin property at the realm of measurable cardinals [7, 6, 9, 13, 23, 22].

The author and Dobrinen [4, 5] made the connection between the two
parallel research streams, and developed the basic framework to study the
Tukey order on measurable cardinals, generalizing results of Dobrinen and
Todorcevic [19, 20] to the measurable contexts, but also discovering surpris-
ing discrepancies between the two.

Unlike other well-studied orders on ultrafilters, the Tukey order lacks an
ultrapower characterization. This makes our understanding of the Tukey
order somehow limited, especially when large cardinals are involved or un-
der other axiomatic systems such as canonical inner models or under the
Ultrapower Axiom (UA) [27]. This was pointed out by the author and
Goldberg in [14]. The first result of this paper provides such an ultrapower
characterization of the Tukey order.

Theorem 1.3. Let U be an ultrafilter and P any directed set. The following
are equivalent:

(1) P ≤T U .
(2) There is a thin cover2 X ∈ MU of j′′UP.

We then use this characterization to measure the distance between the
Tukey order and other orders on ultrafilters such as the Rudin-Keilser order,
the Ketonen order. We believe that such a characterization can be useful in
determining the structure of the Tukey order on σ-complete ultrafilters un-

der UA, or at least in models in the Mitchell models of the form L[U⃗ ], where

2See Definition 2.7
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U⃗ is a coherent sequence of normal ultrafilter. We also apply our charac-
terization to give a simple ultrapower characterization of cohesiveness/the
Galvin property.

In the second part of this paper, we improve two results from [30]:

Theorem 1.4. Suppose that U is (λ, λ)-cohesive and W is (λ, κ) cohesive
for κ ≤ λ, or vise versa. Then U ·W is (λ, κ)-cohesive.

Kanamori proved [31, Proposition 2.3] the special case where λ = µ = ω1

and U,W are ultrafilters on ω. He also pointed out that his argument does
not generalize to other cardinals. The theorem follows from the author and
Dobrinen’s simple formulas [4, 5] for the Tukey-type of Fubini product of
κ-complete ultrafilters on a measurable cardinal κ and for certain ultrafilters
on ω.

The second result we would like to improve is the following:

Theorem 1.5 ([30, Theorem 1.2(2)]). Assume 2κ = κ+. Any uniform
ultrafilter over κ is not (κ+, κ+)-cohesive.

In light of this result, the following question is natural:

Question 1.6. [Kanamori] Is it consistent that there is a measurable car-
dinal carrying a κ-complete ultrafilter which is (κ+, κ+)-cohesive?

To formulate our first theorem, we define The character of an ultrafilter
U , as the cardinal:

ch(U) = min{|B| | B generates U}

Where B ⊆ U generates U (or forms a base for U) if for every X ∈ U there
is b ∈ B such that b ⊆ X.

Theorem 1.7. Any uniform ultrafilter U over any cardinal κ is (cf(ch(U)), cf(ch(U)))-
cohesive.

Now Kanamori’s theorem 1.5 is a special case of the Theorem 1.7, since
if 2κ = κ+, then ch(U) = κ+.

Theorem 1.7 is optimal when ch(U) is regular, as for every regular λ >
ch(U), U is (λ,< λ)-cohesive, and for singulars, (λ,< λ)-cohesive; that
is, for every µ < λ, U is (λ, µ)-cohesive. This leaves an intriguing case
when ch(U) is singular which we do not address in this paper. Nonetheless,
note that this does not mean that U is not (λ′, λ′)-cohesive for λ′ < ch(U).
We then investigate what is known as the point spectrum of an ultrafilter,
denoted here by SpT (U), which consists of all regular cardinal λ such that
λ ≤T U . This was considered before for general directed sets by Isbell [28]
and earlier by Schmidt [38], and recently in connection to pcf theory by
Gartside and Mamatelashvili [24], and Gilton [25]. For ultrafilters, this was
indirectly addressed in [8] by Garti, Poveda and the author. We will use
this to answer Question 1.6.
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As it investigates cofinal types, the Tukey order is highly connected to
ch(U) and the generalized ultrafilter number, which is defined for an infinite
cardinal κ ≥ ω by

uκ = min{ch(U) | U is a uniform ultrafilter over κ}.

The most studied instance is uω = u also known as the ultrafilter number. It
is now a long-standing open problem whether it is consistent that uω1 < 2ω1 .
The main technique to separate the ultrafilter number from the continuum
is to iterate Mathias forcing and create an ultrafilter with a ⊆∗-decreasing
generating sequence (see Definition 4.19). This technique does not generalize
to higher cardinals, but some variation of it was used to show the consistency
of uκ < 2κ for measurable cardinals κ starting from a supercompact cardinal
[16]. The following is completely open:

Question 1.8. Is the consistency strength of uκ < 2κ on a measurable
cardinal higher than o(κ) = κ++?

Note that o(κ) = κ++ is a lower bound since we must violate GCH at a
measurable cardinal.

The technique of obtaining long generating sequence of ultrafilter is tightly
related to the generalization of p-points considered by Kunen:

Definition 1.9 (Kunen). Let U be an ultrafilter. U is called a Pλ-point if
for any ⟨Aα | α < µ⟩ ⊆ U , where µ < λ, there is A ∈ U such that A ⊆∗ Aα

for every α < µ.

Hence, when U is κ-complete over κ, U is a p-point precisely when it is a
Pκ+-point. This can of course be formulated in terms of general topological
spaces by saying that a point x is a Pλ-point if every less than λ many
open neighborhoods of x contain a common open neighborhood. Then an
ultrafilter U on κ is a Pλ point iff it is such in the topological space βκ \ κ.

We use a refinement of the point spectrum, which we call the depth Spec-
trum, and define the depth of an ultrafilter to connect Pλ-points, Kanamori’s
question 1.6, and strong generating sequences in terms of consistency strength:

(1) There exists a Pκ++-point.
(2) There is a κ-complete ultrafilter which is (κ+, κ+)-cohesive ultrafil-

ter.
(3) There exists an ultrafilter on κ with a strong generating sequence of

length κ++.

It will be clear later that the depth spectrum is to the order (U,⊇∗) what
the decomposability spectrum of Chang and Keisler is to (U,⊇) (i.e. to
completeness).

In the last section, we prove some consistency results regarding the point
and depth spectrum of a κ-complete ultrafilter over κ > ω, starting from
optimal assumptions. In particular, we provide a calculation of the point
and depth spectrum in the Cohen extension. Then we prove the following:
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Theorem 1.10. Starting form o(κ) = κ++, it is consistent that there is a
normal ultrafilter U such that Stdp(U) = {κ+, κ++}.

The structure of this paper is as follows:

• In Section §2: we prove our characterization of the Tukey order in
terms of the ultrapower, and deduce some corollaries.

• In Section §3 we characterize cohesivness in therms of ultrapowers
and improve [30, Proposition 2.3].

• In Section §4 we explore the point and depth spectrum of an ultra-
filter to improve Theorem 1.5 and to address Question 1.6.

• In Section5, we present several consistency results relevant for the
results of from the other sections.

Notations & global assumptions. Our notations are standard for the
most part. A ultrafilter U on an infinite set X is a nonempty collection of
subsets of X that is closed under intersection and superset, does not contain
∅, and for every Y ⊆ X, with Y ∈ U or X \Y ∈ U . We say that U is uniform
if for every Y ∈ U , |Y | = |X|. If U is a filter on X and f : X → Y is a
map, then f∗(U) = {B ⊆ Y | f−1(B) ∈ U} is also a ultrafilter, called the
image ultrafilter or the pushforward ultrafilter. Many properties of U are
inherited by f∗(U).

For two ultrafilters U, V on X,Y respectively, we say U is Rudin-Keisler
reducible to V , denoted U ≤RK V , if there is a map f : Y → X such that
U = f∗(V ). We call U and V Rudin-Keisler equivalent, denoted U ≡RK V ,
if there is a bijection f : X → Y such that U = f∗(V ). It is a standard fact
that U ≤RK V and V ≤RK U imply U ≡RK V .

[X]κ, [X]<κ, [X]≤κ denote the sets of all subsets of X of cardinality κ, less
than κ, at most κ, respectively.

Let F be a filter on X, and f, g : X → κ. We denote by f ≤F g if
{x ∈ X | f(x) ≤ g(x)} ∈ F and we say that f is bounded by g mod
F ; variations on this notation such as f =F g or f <F g should be self-
explanatory. Note that if f <F g and F ′ is a filter extending F then f <F ′ g.
A function f is bounded mod F if there is α ∈ κ such that f ≤F cα where
cα is the constant function α. We say that f is unbounded mod F if f is not
bounded mod F . Finally, our forcing convention are in Israel style, namely,
p ≤ q means q is stronger than p.

2. A characterization of the Tukey order in terms of the
ultrapower

Given two directed partially ordered sets (P,≤P), (Q,≤Q) a Tukey map or
a Tukey reduction from P to Q is a function f : P → Q which is unbounded;
that is, whenever A ⊆ P is unbounded in P, f ′′A is unbounded in Q. The
Tukey order, denoted by ≤T , is then defined by setting (P,≤P) ≤T (Q,≤Q)
iff there is a Tukey map from P to Q. Schmidt found that the dual of Tukey
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maps are cofinal maps; A function f : Q → P is cofinal if for every B ⊆ Q
cofinal, f ′′B is cofinal in P.
Proposition 2.1 (Schmidt duality [38]). There is a Tukey map f : P → Q
iff there is a cofinal map g : Q → P

We will mostly be interested in the Tukey order restricted to directed
sets of the form (F,⊇) where F is a filter (usually an ultrafilter) ordered
by reversed inclusion. For filters we may always assume that the cofinal
map is (weakly) monotone, that is, if A ⊆ B then f(A) ⊆ f(B). For more
information regarding the Tukey order restricted to ultrafilters, we refer the
reader to N. Dobrinen’s survey [18].

The goal of this section is to characterize the Tukey order P ≤T U for an
ultrafilter over κ ≥ ω in terms of its ultrapower, and more precisely, in terms
of the existence of certain “covers” of j′′UP . To do that we will establish a
connection between these covers and functions f : P → U .

Definition 2.2. Let f, g : A → P (κ) for some set A. We say that f =U g
if there is a set Z ∈ U such that for every a ∈ A, f(a) ∩ Z = g(a) ∩ Z.

Given X ∈ MU , we pick Y ∈ V such that X ⊆ jU (Y ). Also pick a

representing function X⃗ = ⟨Xα | α < κ⟩ (so in particular, jU (X⃗)[id]U = X),

and denote by f X⃗
X : Y → P (κ) the function defined by

f X⃗
X (y) = {α < κ | y ∈ Xα}.

Note that if X⃗ ′ also represents X, then there is a set Z ∈ U such that for

every α ∈ Z, Xα = X ′
α. So for all y ∈ Y , f X⃗

X (y) ∩ Z = f X⃗′
X (y) ∩ Z, namely

f X⃗
X =U f X⃗′

X . We let fX be some representative of this equivalence class.
In the other direction, any f : Y → P (κ) induces a set Xf in MU defined

by
MU |= Xf = {y ∈ jU (Y ) | [id]U ∈ jU (f)(y)}.

Once again, note that if f =U g, then Xf = Xg.

Proposition 2.3. For any X ∈ MU , any choice of Y so that X ⊆ jU (Y ),
XfX = X. Also for any f : Y → P (κ), fXf

=U f .

Proof. Note that XfX = {q ∈ jU (Y ) | [id]U ∈ jU (fX)(q)}, then for every
q ∈ jU (Y ),

q ∈ XfX iff [id]U ∈ jU (fX)(q)

iff [id]U ∈ {α < jU (κ) | q ∈ jU (X⃗)α}

iff q ∈ jU (X⃗)[id]U
iff q ∈ X

For the second part, Xf is represented by X⃗ = ⟨Xα | α < κ⟩, where Xα :=
{p ∈ Y | α ∈ f(p)}. Let p ∈ Y , then

f X⃗
Xf

(p) = {α < κ | p ∈ (Xf )α} = {α < κ | α ∈ f(p)} = f(p)
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Hence f = f X⃗
X =U fX

□

Definition 2.4. Let Z ⊆ MU . We say that X ∈ MU covers Z if for every
p ∈ Z, MU |= p ∈ X.

IfMU is well-founded (and therefore identified with its transitive collapse),
then a cover is just a superset. From now on, we will write x ∈ y for elements
in MU where we actually mean that MU |= x ∈ y. Similarly, A ∩ B for
A,B ∈ MU is defined inMU as the set of all p such thatMU |= p ∈ A∧p ∈ B,
and so on.

Claim 2.5. For any function f : Y → P (κ) and Z ⊆ Y , Xf covers j′′UZ iff
f ↾ Z : Z → U .

Proof. =⇒: follows easily from Loś Theorem.
⇐=: Let p ∈ Z, then jU (f)(jU (p)) = jU (f(p)). Since f(p) ∈ U , [id]U ∈

jU (f(p)), and by the definition of Xf , jU (p) ∈ Xf .
□

By the previous claim, we conclude that

Corollary 2.6. For any set X ∈ MU , and any sets Z ⊆ Y , X covers j′′UZ
iff fX ↾ Z : Z → U .

Proof. SinceX = XfX , the corollary follows by applying the claim to fX . □

Now we translate between properties of f and properties of X. The first,
is unboundedness:

Definition 2.7. Let U be an ultrafilter, and P a directed set. We say that
a set X ∈ MU is a thin cover of P if j′′UP ⊆ X and for any unbounded set
A ⊆ P, jU (A) ̸⊆ P.

Lemma 2.8. Let P be a directed set and f : Y → P (κ) such that P ⊆ Y .
Then f ↾ P : P → U is unbounded iff Xf is a thin cover.

Proof. Suppose f ↾ P → U is unbounded. Then by Corollary 2.6, Xf is
indeed a cover. To see it is thin, suppose jU (A) ⊆ Xf , then

[id]U ∈
⋂

B∈jU (A)

jU (f)(B) = jU (
⋂
B∈A

f(B)).

Hence
⋂

B∈A f(B) ∈ U , which means that f ′′A is bounded in U . Since f ↾ P
is unbounded, A must have been bounded. In the other direction, suppose
that Xf is a thin cover. Then by Corollary 2.6, f ↾ P : P → U . To see that
f ↾ P is unbounded, let A ⊆ P be unbounded, since jU (A) ̸⊆ Xf ,

[id]U /∈
⋂

B∈jU (A)

jU (f)(B) = jU (
⋂
B∈A

f(B)).

Hence f ′′A is unbounded in U . □
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Corollary 2.9. For any cover X ∈ MU , X is a thin cover iff fX ↾ P is
unbounded.

This gives a characterization of the Tukey order in terms of covers:

Theorem 2.10. Let U be an ultrafilter and P any directed set. The following
are equivalent:

(1) P ≤T U .
(2) There is a thin cover X ∈ MU of j′′UP.

Corollary 2.11. Let U,W be ultrafilters. The following are equivalent:

(1) W ≤T U .
(2) There is a cover X ∈ MU of j′′UW such that if

⋂
A /∈ W , then

jU (A) ̸⊆ X.

Remark 2.12. We are crucially missing a characterization of a cofinal map
g : U → W in terms of the ultrapower by W .

When we cover j′′UW , it is tempting to require that the cover X ∈ MU is
a filter. However, as we will further notice, this corresponds to Tukey maps
with additional properties. From now on, we only consider P = W for some
ultrafilter W and our canonical choice of Y would be P (κ). So we consider
functions f : P (κ) → P (κ).

Definition 2.13. We say that a function f : P (κ) → P (κ) is:

(1) monotone, if A ⊆ B ⇒ f(A) ⊆ f(B)
(2) semi-additive, if f(A) ∩ f(B) ⊆ f(A ∩B).
(3) additive if f(A) ∩ f(B) = f(A ∩B).
(4) µ-semi-additive if for any ⟨Ai | i < λ⟩ ∈ [P (κ)]<µ,

⋂
i<µ f(Ai) ⊆

f(
⋂

i<µAi)

(5) µ-additive if for any ⟨Ai | i < λ⟩ ∈ [P (κ)]<µ,
⋂

i<µ f(Ai) = f(
⋂

i<µAi).

(6) negative if f(κ \A) = κ \ f(A).
(7) an homomorphism if f is negative and additive.

It is not hard to check that f is µ-additive iff it is µ-semi-additive and
monotone. We say that a set X ⊆ P (κ) is ultra, if for every A,

A ∈ X xor κ \A ∈ X.

The proof of the following propositions is simple.

Proposition 2.14. (1) f is monotone ⇒ Xf is upwards closed.
(2) f is semi-additive ⇒ Xf is closed under intersection.
(3) f is additive ⇒ Xf is a filter.
(4) f is µ-additive ⇒ Xf is a µ-complete filter.
(5) f is negative ⇒ Xf is ultra.
(6) f is an homomorphism ⇒ Xf is an ultrafilter.

□
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Proposition 2.15. (1) X is upwards closed⇒ then there is a monotone
f such that fX = f .

(2) X is closed under intersection ⇒ there is a semi-additive f so that
fX =U f is

(3) X is a filter ⇒ there is an additive f so that fX =U f .
(4) X is a µ-complete filter ⇒ there is a µ-additive f so that fX =U f .
(5) X is ultra ⇒ there is a negative f so that fX =U f .
(6) X is an ultrafilter ⇒ there is an homomorphism f such that fX =U

f .

□

Corollary 2.16. (1) There is a thin upward closed cover iff there is a
monotone Tukey map.

(2) There is a thin cover closed under intersection iff there is a semi-
additive Tukey map.

(3) There is a thin filter cover iff there is an additive Tukey map.
(4) There is a thin µ-complete filter cover iff there is a µ-additive Tukey

map.
(5) There is an ultra thin cover iff there is a negative Tukey map.
(6) There is an ultrafilter thin cover iff there is an homomorphism Tukey

map.

□
By the ultrafilter lemma we get that:

Corollary 2.17. There is an additive Tukey map iff there is an homomor-
phism Tukey map.

Lemma 2.18. Any cover X ∈ MU , closed under intersections, such that
jU (C) ̸⊆ X for every C ⊆ W with

⋂
C = ∅ must be a thin cover.

Proof. It remains to see that X does not contain the image of a set C such
that

⋂
C /∈ W . Suppose otherwise, then jU (C) ⊆ X. Let

C′ = {Y ∩
⋂

C | Y ∈ C}.

Then
⋂
C′ = ∅. But since X covers j′′UW , and

⋂
C ∈ W , jU (

⋂
C) ∈ X.

Also since X is closed under intersection and jU (C) ⊆ X, then jU (C′) =

{Y ∩ jU (
⋂
C) | Y ∈ jU (C)} ⊆ X, contradicting the assumption regarding

X. □

Next, we would like to use the above characterization to measure the
distance between the Tukey order and other orders on ultrafilters. Recall
that the Rudin-Keisler order is defined as follows:

Definition 2.19. Let U,W be ultrafilters over κ respectively. We say that
W ≤RK U if there is f : κ → κ such that

W = f∗(U) = {A ⊆ κ | f−1[A] ∈ U}.
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Given a Rudin-Keisler projection f : κ → κ, we can define Ff : P (κ) →
P (κ) by Ff (A) = f−1[A]. Then we have the following properties:

(1) Ff is an ∞-additive homomorphism. That is, for any A ⊆ P (κ),
Ff (

⋂
A) =

⋂
F ′′
f A.

(2) Ff ↾ W : W → U is Tukey.

Corollary 2.20. W ≤RK U then W ≤T U

Observe that the Rudin-Keisler order is characterized by:

W ≤RK U iff
⋂

j′′UW ̸= ∅.

Given any α ∈
⋂
j′′UW we can explicitly define the cover

X = pjU (κ)
α := {A ⊆ jU (κ) | α ∈ A}.

A principal ultrafilter is always ∞-complete this ultrafilter cover of j′′UW .
This simple observation enables us to characterize the Rudin-Keisler order
in terms of unbounded maps:

Corollary 2.21. W ≤RK U iff there is an ∞-additive map f such that
f ↾ W is a Tukey reduction.

Proof. From left to right follows from the previous paragraph. In the other
direction, if f is such a map, then there is a thin filter cover X of j′′UW
which is ∞-complete. This means that

⋂
X ∈ X. Since X is thin, X is

a proper filter and thus ∅ /∈ X. It follows that
⋂
X ̸= ∅ and in particular⋂

j′′UW ̸= ∅. It follows that U ≤RK W . □

Remark 2.22. Ther is no hope of characterazing the Tukey order on all
ultrafilters using function f : κ → κ, as it is consistent that there are 22

κ
-

many incomperable ultrafilters in the Tukey order, and since there is always
a Tukey-top (i.e. maximal) ultrafilter.

Next we address continuity of functions f : P (κ) → P (κ).

Definition 2.23. A function f : P (κ) → P (κ) is continuous if for every
α < κ there is ξα < κ such that for every A ∈ W , f(A)∩α depends only on
A∩ξα. f is Lipschitz if we can pick ξα = α and super-Lipschitz if f(A)∩α+1
depends only on A ∩ α.

Definition 2.24. We say that X concentrates on A if for every B,C with
B ∩A = C ∩A, B ∈ X iff C ∈ X.

Remark 2.25. If X is upwards closed, and X concentrates on A ⊆ jU (κ),
then A ∈ X: Indeed jU (κ) ∈ X and A ∩A = A = A ∩ jU (κ), hence A ∈ X.

If X is moreover a filter then X concentrates on any A ∈ X: Let B ∈ X
and suppose that B ∩A = C ∩A, then B ∩X ∈ A and therefore C ∩X ∈ A
and therefore C ∈ A.
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Proposition 2.26. Let U be an ultrafilter. If f : P (κ) → P (κ) is continuous
with parameters ξα, then in MU , Xf concentrates on [α 7→ ξα+1]U . In
particular, if f is Lipschitz then Xf concentrates on [id]U + 1 and if f is
super-Lipschitz then Xf concentrates on [id]U .

Proof. Suppose that X ∈ A and Y ⊆ jU (W ) is such that Y ∩ ξ[id]U+1 =
X ∩ ξ[id]U+1, then jU (f)(Y )∩ [id]U +1 = jU (f)(X)∩ [id]U +1 and therefore
Y ∈ A. □

Proposition 2.27. If X ∈ MU concentrates on δ < jU (κ) then there is a
continuous function f : P (κ) → P (κ) such that fX =U f . In particular, if X
concentrates on [id]U+1, then f above cab be Lipschitz and if it concentrates
on [id]U then super-Lipschitz.

Proof. Suppose that X concentrates on δ = [α 7→ δα]U , and let

Z = {α < κ | Xα concetrates on δα} ∈ U

Let X⃗ be a representing sequence for X so that for every α, Xα concentrates

on δα, and let f = f X⃗
X . By the definition of f X⃗

X , f(A) = {α < κ | A ∈ Xα}.
Hence f is continuous with parameters δα. Indeed, for every β < κ, if
X ∩ δβ = Y ∩ δβ, then for every γ ≤ β X ∩ δγ = Y ∩ δγ and since Aγ

concentrates on δγ , we have that γ ∈ f(X) iff γ ∈ f(Y ). Hence f(X)∩β+1 =

f(Y ) ∩ β + 1. Finaly f = f X⃗
X =U fX . □

The following theorem was proven in [4]. We will need to derive some fine
corollaries from the proof, so let us reproduce the proof here:

Theorem 2.28. If U is a p-point ultrafilter, and f : U → W is monotone,
then there is X∗ ∈ U such that f ↾ (U ↾ X∗) is continuous.

Proof. Suppose that U is any p-point κ-complete ultrafilter, W is any ultra-
filter on κ, and f : U → W is monotone. Let π : κ → κ represent κ in MU .
Then by p-pointness we may assume that π is almost one-to-one. Denote by
ρα = sup(π−1[α+ 1]) and fix any sequence γα < κ. For α < κ. let us define
a sequence of sets Xα: For every s ⊆ ρα and δ < γα, if there is a set Y ∈ U
such that Y ∩ ρα = s and δ /∈ f(Y ), pick Ys,δ = Y . Otherwise let Ys,δ = κ.
Define

Xα =
⋂
s,δ

Ys,δ ∈ U

Claim 2.29. Xα has the property that for any Y ∈ U , if Y \ ρα ⊆ Xα \ ρα,
f(Y ) ∩ γα = f((Y ∩ ρα) ∪ (Xα \ ρα)) ∩ γα.

Proof. Indeed, Y ⊆ (Y ∩ ρα) ∪ (Xα \ ρα), so by monotonicity, we get “ ⊆ ”.
In the other direction, if δ /∈ f(Y ) ∩ γα, let s = Y ∩ ρα, we have that
s ∪ Xα \ ρα ⊆ Ys,δ and since δ /∈ f(Ys,δ), it follows again by monotonicity
that δ /∈ f(s ∪Xα \ ρα). □
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By p-pointness, let X∗ = ∆∗
α<κXα be the modified diagonal intersection

defined as

∆∗
α<κXα = {ν < κ | ∀α < π(ν), ν ∈ Xα} ∈ U.

Then for every α < κ we have X∗ \ ρα ⊆ Xα. Now for every α < κ and
every Y ⊆ X∗ we have that f(Y )∩γα = f((Y ∩ρα)∪ (X∗ \ρα))∩γα. Hence
f ↾ U ↾ X∗ is continuous. □

Suppose that U is normal, in particular ρα = α + 1 and suppose that
γα = α+2. Denote by 2<κ the set of all binary functions f with dom(f) ∈ κ.

Define f̂(h) for h ∈ 2α. For α = 0, f̂(h) = ∅. For α+ 1 successor, define

f̂(h) = f((χ−1(h) ∩X∗) ∪X∗ \ dom(h)) ∩ α+ 2,

where χ : P (κ) → 2κ is the map sending X to its indicator function χ(X).

For limit α, define f̂(h) =
⋃

β<α f̂(h ↾ β + 1). This defined f̂ : 2<κ → P (κ).

Now define f∗ : P (κ) → P (κ) by f∗(X) =
⋃

α<κ f̂(χ(X) ↾ α).

Proposition 2.30. Suppose that U is normal, then

(1) if h1 ⊆ h2, then f̂(h1) ⊑ f̂(h2).
(2) f∗ is Lipschitz continuous.
(3) f ↾ (U ↾ X∗) ⊆ f∗.
(4) f∗ is monotone.
(5) If f is cofinal then f∗ is cofinal.
(6) If f is unbounded then f∗ is unbounded.
(7) If f is cofinal and U ̸= W , then f∗ is super-Lipschits.

Proof. (1) We may assume that dom(h1), dom(h2) are successor cardinals as

the limit case follows from the successor case and the definition of f̂ . Suppose
that h1 ⊆ h2 have successor domains α1 ≤ α2, then χ(h2) ∩ X∗ ∩ α1 =

χ(h1) ∩X∗, we get that f̂(h1) = f((χ(h1) ∩X∗) ∪X∗ \ α1) ∩ α1 + 1. Also,
taking Y = (χ(h2)∩X∗)∪X∗ \ α2, we have that Y ⊆ X∗. By the property
of f , we have that f(Y ) ∩ α1 + 1 = f((Y ∩ α1) ∪X∗ \ α1) ∩ α1 + 1. Hence

f̂(h2) ∩ α1 + 1 = f((χ(h2) ∩X∗) ∪X∗ \ α2) ∩ α1 + 1

= f((Y ∩ α1) ∪X∗ \ α1) ∩ α1 + 1

= f((χ(h2) ∩X∗ ∩ α1) ∪ (X∗ \ α1)) ∩ α1 + 1

= f((χ(h1) ∩X∗) ∪ (X∗ \ α1)) ∩ α1 + 1 = f̂(h1).

Thus f̂(h1) ⊑ f̂(h2).
(2) follows from (1). Indeed, since f∗(X) is the ⊑-increasing union of

f̂(χ(X) ↾ α), we see that

f∗(X) ∩ α = f̂(χ(X) ↾ α) ∩ α,

and if X ∩ α = Y ∩ α then χ(X) ↾ α = χ(Y ) ↾ α.



ON ULTRAPOWERS AND COHESIVE ULTRAFILTERS 13

(3) If Y ⊆ X∗ and Y ∈ U , then for every α < κ, Y ∩X∗∩α+1 = Y ∩α+1
and

f(Y )∩α+1 = f((Y ∩α+1)∪(X∗\α+1))∩α+1 = f̂(χ(Y ) ↾ α+1) = f∗(Y )∩α+1.

Since this is true for every α, f∗(Y ) = f(Y ).
(4) For every X ⊆ κ and for every α < κ,

f̂(χ(X) ↾ α+ 1) = f(X ∩X∗ ∩ α+ 1) ∪X∗ \ α+ 1) ∩ α+ 1.

Since f is monotone, we conclude that ifX1 ⊆ X2, then for every α, f∗(X1)∩
α+ 1 ⊆ f∗(X2) ∩ α+ 1. resulting in f∗(X1) ⊆ f∗(X2).

(5) If f is cofinal, then f ′′U ↾ X∗ is also cofinal (since U ↾ X∗ is cofinal in
U). By (3), f∗′′U ↾ X∗ is cofinal and therefore f∗ has a cofinal image. This
together with (4) suffices for f∗ to be cofinal.

(6) Suppose that f is unbounded. To see that f∗ is unbounded, suppose
that A ⊆ U is unbounded, then also A ↾ X∗ = {A ∩ X∗ | X ∈ A} is
unbounded. Since f is unbounded then f ′′A ↾ X∗ in unbounded. Now it is
not hard to see that for every Y ⊆ κ, f∗(Y ) = f∗(Y ∩X∗) = f(Y ∩X∗) and
therefore f∗′′A is also unbounded.

(7) First note that by the proof of (2), for α successor we get even more,

that f∗(X) ∩ α + 1 = f̂(χ(X) ↾ α), and therefore if X ∩ α = Y ∩ α then
f∗(X) ∩ α + 1 = f∗(X) ∩ α + 1. Now let X0 ∈ U be such that Xc

0 ∈ W .
Since f is cofinal, there is Y such that f(Y ) ⊆ Xc

0 and we may take our
X∗ so that X∗ ⊆ X0 ∩ Y and in particular f(X∗) ⊆ Xc

0. Note that for

every h, f̂(h) ⊆ f(X∗) and therefore for every X, f∗(X) ⊆ f(X∗). Let
α < κ and suppose that X,Y are such that X ∩ α = Y ∩ α. By (2),
f∗(X) ∩ α = f∗(Y ) ∩ α. Let us split into cases. If α ∈ X0, then α /∈ f∗(X)
and α /∈ f∗(Y ). Hence f∗(X) ∩ α + 1 = f∗(Y ) ∩ α + 1. If α /∈ X0, then
α /∈ X∗, hence α /∈ X ∩X∗ and α /∈ Y ∩X∗. It follows that

X ∩X∗ ∩ α+ 1 = X ∩X∗ ∩ α = Y ∩X∗ ∩ α = Y ∩X∗ ∩ α+ 1

We conclude that

f∗(X)∩α+1 = f∗(X ∩X∗)∩α+1 = f∗(Y ∩X∗)∩α+1 = f∗(Y )∩α+1.

□

Corollary 2.31. If W ≤T U , and U is normal and W ̸= U , then there
is an upwards closed cover X ∈ MW of j′′UW such that X concentrates on
[id]U .

The above is closely related to the Ketonen order. The reason is that the
Ketonen ordered is defined by U <K W if there is a cover X such that X is
an ultrafilter concentrating on [id]U .

Since we lack the characterization of cofinal maps in the ultrapower, there
are some properties of the cover X we are missing. These properties might
be useful in an attempt to prove that normal ultrafilters are Tukey minimal.

Question 2.32. Is there a property of the cover Xf that is equivalent to f
being cofinal? How about monotone continuous and cofinal?
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3. On Cohesive ultrafilters

Recall that an ultrafilter U is (λ, µ)-cohesive (or alternatively, Gal(U, µ, λ)
holds) if for anyA ∈ [U ]λ there is B ∈ [A]µ such that

⋂
B ∈ U . The results of

the previous section provide an elegant characterization of the cohesiveness
in terms of the ultrapower:

Theorem 3.1. Let U be an ultrafilter over κ ≥ ω, and µ ≤ λ be any
cardinals. Then the following are equivalent:

(1) U is (λ, µ)-cohesive.
(2) Any cover X ∈ MU of j′′Uλ ⊆ X contains a set of the form jU (Y )

for some Y ∈ [λ]µ.

Proof. Assume that U is (λ, µ)-cohesive and let X = [β 7→ Xβ]U be any
cover as in (2). For every i < λ let Ai = {β < κ | i ∈ Xβ}, then by
Loś Theorem, Ai ∈ U . By (λ, µ)-cohesiveness, there is Y ∈ [λ]µ such that
A∗ =

⋂
i∈Y Ai ∈ U . It follows that for every β ∈ A∗, Y ⊆ Xβ and therefore

(again by Loś) jU (Y ) ⊆ X.
In the other direction, suppose that (2) holds and let us prove that U is

(λ, µ)-cohesive. Let ⟨Ai | i < λ⟩ ⊆ U . Working in MU , consider

jU (⟨Ai | i < λ⟩) = ⟨A′
i | i < jU (λ)⟩

and define X = {β < jU (λ) | [id]U ∈ A′
β} ∈ MU . Then, since A′

jU (β) =

jU (Aβ), [id]U ∈ A′
jU (β) and jU (β) ∈ X. It follows that X covers j′′Uλ. By

(2) there is Y ∈ [λ]µ such that jU (Y ) ⊆ X and therefore
⋂

i∈Y Ai ∈ U . To
see this, note that

jU (
⋂
i∈Y

Ai) =
⋂

i∈jU (Y )

A′
i

and since jU (Y ) ⊆ X, [id]U ∈ A′
i for all i ∈ jU (Y ) hence [id]U ∈ jU (

⋂
i∈Y Ai)

□

Remark 3.2. (1) Requiring that the cover X contains a set of the form
jU (Y ) where Y has size µ is equivalent to representing X = [β 7→
Xβ]U and requiring the existence of A ∈ U such that

⋂
β∈AXβ has

size µ.
(2) Condition (2) above can be replaced with the following: Any X ∈

MU such that (in V ) |X ∩ j′′Uλ| = λ contains a set of the form jU (Y )
for some Y ∈ [λ]µ. The reason is that the existence of a bijection
φ : λ → j−1

U [X] enables to convert the set X to a full cover of j′′Uλ.

Let us now reproduce the characterization of Tukey-top ultrafilters using
Theorem 3.1 and Theorem 2.10

Corollary 3.3. Let U be an ultrafilter over κ ≥ ω, and µ ≤ λ are such that
λ<µ = λ. The following are equivalent:

(1) For any µ-directed set P, such that |P| ≤ λ, P ≤T (U,⊇).
(2) ([λ]<µ,⊆) ≤T (U,⊇).
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(3) U is not (λ, µ)-cohesive.

Proof. Clearly, (1) implies (2). To see that (2) implies (3), by Theorem 2.10
there is a thin cover X of j′′U [λ]

<µ. Define X ′ = {Y | {Y } ∈ X} ∈ MU Then
j′′Uλ ⊆ X ′. Note that if I ∈ [λ]µ, then I∗ = {{i} | i ∈ I} is unbounded in
[λ]<µ and therefore there jU (I

∗) ̸⊆ X. therefore, there is i ∈ jU (I) such that
{i} /∈ X, namely, i /∈ X ′. So X ′ is a thin cover of j′′Uλ and by Theorem 3.1,
U is not (λ, µ)-cohesive. To see that (3) implies (1), Let P be any µ-directed
set of size ≤ λ and let f : P → λ be injective. By Theorem 3.1 find a thin
cover X of j′′Uλ. Then X ′ = j−1

U (f)[X] is a thin cover of j′′UP. □

By Galvin’s Theorem [1], every normal (or even p-point) ultrafilter is
(κ+, κ)-cohesive. Hence we get the following:

Corollary 3.4. If U is normal (or even a p-point), then whenever X ∈ MU

covers j′′Uκ
+, there is Y ∈ [κ+]κ such that jU (Y ) ⊆ X.

An improvement of Galvin’s theorem can be found in [2] to iterated sums
of p-points. So the above corollary holds in this generality as well.

Kanamori proved that if {U}∪{Wn | n < ω⟩} is a set of (ω1, ω1)-cohesive
ultrafilters on ω, then

∑
U Wn is (ω1, ω)-cohesive. He then says that this

does not generalize to κ > ω. We will prove that to some extent his result
do generalize to κ > ω, and that on measurable cardinals we can even say
a bit more. We say that a directed set P is (λ, µ)-cohesive, if for every
⟨pα | α < λ⟩ ⊆ P there is I ∈ [λ]µ such that {pi | i ∈ I} is bounded. It is
not hard to see that cohesiveness is an invariant of the Tukey order:

Fact 3.5. If P ≤T Q and Q is (λ, µ)-cohesive, then P is (λ, µ)-cohesive. So
if P ≡T Q, then Q is (λ, µ)-cohesive if and only if P is (λ, µ)-cohesive.

In fact, similar to ultrafilters, it is possible to show that if λ<µ = λ, P
is not (λ, µ)-cohesive exactly when ([λ]<µ,⊆) ≤T P. We will also need the
following theorem.

Theorem 3.6 (B.-Dobrinen [4]). Let U,W be κ-complete ultrafilters over
κ > ω. Then U ·W ≡T U ×W

Theorem 3.7. Let U,W be κ-complete ultrafilters over κ > ω. Suppose
that U is (λ, λ)-cohesive and W is (λ, µ)-cohesive (or the other way around).
Then U ·W is (λ, µ)-cohesive.

Proof. First, by Theorem 3.6, U · W ≡T U × W . By the previous fact, it
suffices to prove that U ×W is (λ, κ)-cohesive. Given ⟨(Aα, Bα) | α < λ⟩ we
need to find µ-many of the pairs which have a lower bound. Indeed since
U is (λ, λ)-cohesive, there is I ⊆ λ of size λ such that B∗ =

⋂
i∈I Bi ∈ U .

Applying (λ, µ)-cohesiveness to ⟨Ai | i ∈ I⟩, find J ⊆ I of size µ such that
A∗ =

⋂
j∈J Aj ∈ W . Then ⟨⟨Aj , Bj⟩ | j ∈ J⟩ is bounded by (A∗, B∗). □

On ω, it is not true that for every two ultrafilter U,W , U ·W ≡ U ×W .
Indeed, Dobrinen-Todorcevic [19] gave an exmaple (under u < d) of an
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ultrafilter (even a p-point) U which is not Tukey equivalent to its Fubini
square. However, by [5, Cor. 1.9], if W ·W ≡T W , then U ·W ≡T U ×W
and the above proof works.

Corollary 3.8. Fix any two ultrafilters U,W over ω such W ·W ≡T W . If
U is (λ, λ)-cohesive and W is (λ, µ)-cohesive then U ·W is (λ, µ)-cohesive.

In [5], the class of ultrafilters which satisfies W · W ≡T W was investi-
gated, and includes rapid p-points (and almost rapid p-points- see [3]), many
instances of generic ultrafilters for P (ω)/I, Milliken-Taylor ultrafilter, and
more.

A general formula for Fubini products was given by Todorcevic-Dobrinen
and Milovich [19, 35], but more relevant to out needs, the following upper
bound for Fubini sums:

Theorem 3.9. For any two ultrafilters U,Wn on ω,∑
U

Wn ≤T U ×
∏
n<ω

Wn.

Let us reproduce Kanamori’s result on ω:

Theorem 3.10. Suppose that U and Wn are (ω1, ω1)-cohesive for every
n < ω. Then

∑
U Wn is (ω1, ω)-cohesive.

Proof. Since (λ, µ)-cohesiveness is downwards closed with respect to the
Tukey order, by theorem 3.9, it remains to see that U ×

∏
n<ω Wn is (ω1, ω)-

cohesive. In the next lemma we sill prove that the Cartesian product of
ω-many (ω1, ω1)-cohesive directed sets is (ω1, ω)-cohesive. □

Lemma 3.11. Suppose that {Pi | i < ω} is a countable set of (ω1, ω1)-
cohesive directed sets. Then

∏
n<ω Pi is (ω1, ω)-cohesive

Proof. Let ⟨(pα,m)m<ω | α < ω1⟩ ⊆
∏

m<ω Pm. Inductively find X0 ⊇ X1 ⊇
X2... all of size ω1 such that for every m, {pα,m | α ∈ Xm} is bounded by
p0m. Choose αi ∈ Xi so that i ̸= j implies αi ̸= αj . Let p∗m be an extension
of p0m and pαi,m for i < m, which exists by directedness. Then we claim that
{(pαi,m)m<ω | i < ω} is bounded by (p∗m)m<ω. Indeed, for every i < ω, and
every m < ω, if i < m, then by p∗m was chosen to be an extension of pαi,m.
If i ≥ m, then αi ∈ Xi ⊆ Xm. Hence pαi,m is bounded by p0m and in turn
by p∗m. □

On κ > ω, there is an analog formula: for U an ultrafilter on γ and
⟨Wα | α < γ⟩ any ultrafilters,∑

U

Wα ≤T U ×
∏
α<γ

Wα.

However the argument above does not generalize to arbitrary products, as
we might not be able to find longer decreasing sequence in the course of the
lemma.
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4. Depth and point spectrum of ultrafilters

In this section we address the property of (λ, λ)-cohesivness for general
λ.

Claim 4.1. For any infinite cardinal λ, U is not (cf(λ), cf(λ))-cohesive iff
λ ≤T U

Proof. Note that λ ≡T cf(λ) and since cf(λ) is regular, [cf(λ)]<cf(λ) ≡T

(cf(λ), <), and the rest follows from Theorem 3.1. □

The following theorem is due to Kanamori:

Theorem 4.2 (Kanamori[30]). Suppose that 2κ = κ+, then any ultrafilter
U over κ is not (κ+, κ+)-cohesive.

The previous theorem is a special case of the following theorem since
under 2κ = κ+, ch(U) = κ+ for any uniform ultrafilter on κ:

Theorem 4.3. Let U be a uniform ultrafilter over κ. Then ch(U) ≤T U .

Proof. Let us construct a sequence of length ch(U) witnessing that ch(U) ≤T

U . Let B be a base for U of size θ, and let us construct a sequence ⟨b∗i | i <
ch(U)⟩ starting with b∗0 = b0. Suppose that ⟨b∗i | i < γ⟩ has been defined.
By minimality of ch(U), there is X ∈ U such that for any i < γ, b∗i ̸⊆ X.
Since B is a base, there is b ∈ B such that b ⊆ X, and therefore for any
i < γ, b∗i ̸⊆ b. let iγ < ch(U) be minimal such that b∗iγ is not generated by

the previous bi’s, and b∗γ = biγ . It is not hard to check that ⟨b∗i | i < ch(U)⟩
is again a base for U . Suppose towards a contradiction that there is I ⊆ θ
unbounded such that

⋂
i∈I b

∗
i ∈ U . Then there j < θ such that b∗j ⊆

⋂
i∈I b

∗
i .

Pick any i ∈ I such that i > j, then b∗j ⊆ b∗i , contradicting the choice of b∗i .
□

Kanamori asked [30, Question 2] the following:

Is the existence of a κ-complete ultrafilter over κ > ω which is
(κ+, κ+)-cohesive consistent?

In this section we will answer Kanamori’s question by studying the point
spectrum and establishing some connections of it to the order (U,⊇∗). This
order was studied by Milovich [34] and later by Dobrinen and the author
[4].

4.1. The point spectrum of an ultrafilter. Define the point spectrum
of an ultrafilter U by

SpT (U) = {λ ∈ Reg | λ ≤T (U,⊇)}.
By Claim 4.1, we also have

SpT (U) = {λ ∈ Reg | U is not (λ, λ)-cohesive}.
Isbell [28] and independently Juhász [29] proved that cardinals such that
κ<κ = κ always admits a uniform ultrafilter U which is not (2κ, ω)-cohesive,
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and therefore Sp(U) = Reg ∩ [ω, 2κ]. Moreover, if for example, κ is κ-
compact (or even less- see [14]) there is always a κ-complete ultrafilter, and
even one which extends the club filter, which is not (2κ, κ)-cohesive. Such
ultrafilter in particular are not (λ, λ)-cohesive for any regular κ ≤ λ ≤ 2κ.

Definition 4.4. An ultrafilter U is (λ, µ)∗-cohesive if the directed set (U,⊇∗

) (λ, µ)-cohesive; that is, if for every sequence ⟨Aα | α < λ⟩ ⊆ U there is
I ∈ [λ]µ such that {Ai | i ∈ I} admits a pseudo intersection in U

Similar to the usual cohesiveness characterization, we have the following:

Proposition 4.5. Let U be an ultrafilter. The following are equivalent:

(1) For any µ-directed poset P, such that |P| ≤ λ, P ≤T (U,⊇∗).
(2) ([λ]<µ,⊆) ≤T (U,⊇∗).
(3) U is not (λ, µ)∗-cohesive.

Define

Sp∗T (U) = {λ ∈ Reg | λ ≤T (U,⊇∗)} = {λ ∈ Reg | U is not (λ, λ)∗-cohesive}.
It is easy to see that (U,⊇∗) ≤T (U,⊇) and that (λ, µ)-cohesivness implies
(λ, µ)∗-cohesivness. Moreover the other implication is usually true as well:

Lemma 4.6. Let U be a uniform ultrafilter over κ and a cardinal µ such
that cf(µ) ̸= κ. If U is (λ, µ)∗-cohesive then U is (λ, µ)-cohesive.

Proof. Assume that U is (λ, µ)∗-cohesive and let ⟨Xi | i < λ⟩ ⊆ U . By
assumption, there is A ∈ U and I ∈ [λ]µ such that for every i ∈ I, A ⊆∗ Xi.
For each i ∈ I, let ξi < κ be such that A\ ξi ⊆ Xi. Let us split into cases. If
µ > κ, then there is I ′ ∈ [I]µ and ξ∗ < κ such that for every i ∈ I ′, ξi = ξ∗.
If cf(µ) < κ, and let ⟨µi | i < cf(µ)⟩ be regular cardinals different from κ
converging to µ. Write I =

⊎
i<cf(µ) Ii where |Ii| = µi, for each i < cf(µ).

If µi < κ, we let ηi = supj∈Ii ξj , and if µi > κ, since it is regular, we can
apply the previous part to find Ji ⊆ Ii, |Ji| = µi such that for every j ∈ Ji,
ξj = ηi. Then we can take ξ∗ = supi<cf(µ) ηi < κ and we let I ′ =

⋃
i<cf(µ) Ji.

In any case, A \ ξ∗ ⊆
⋂

i∈I′ Xi. By uniformity, A \ ξ∗ ∈ U and therefore⋂
i∈I′ Xi ∈ U . □

Corollary 4.7. If cf(λ) ̸= κ, then U is (λ, λ)-cohesive iff U is (λ, λ)∗-
cohesive. In particular,

SpT (U) \ {κ} = Sp∗T (U) \ {κ}

Remark 4.8. For any uniform ultrafilter over κ will have κ ∈ SpT (U). How-
ever U can be (κ, κ)∗-cohesive if for example U is a p-point. In fact, for
κ-complete ultrafilters U over κ, U is a p-point iff U is (κ, κ)∗-cohesive. Or
in other words, for κ-complete ultrafilters, U is not a p-point iff SpT (U) =
Sp∗T (U).

Definition 4.9. Let U be an ultrafilter. Let the Depth Spectrum of U
be denoted by Spdp(U) and defined to be the set of all regular cardinal
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lengths θ of sequences ⟨Ai | i < θ⟩ ⊆ U which are ⊇∗-decreasing and have
no measure one pseudo intersection in U . Define the Depth of U to be
dp(U) = min(Spdp(U)).

It is not hard to prove using Zorn’s lemma that Spdp(U) ̸= ∅ and therefore
dp(U) is well defined. Note that if θ is singular, and ⟨Ai | i < θ⟩ is ⊇∗-
decreasing with no ⊇∗-bound, then cf(θ) ∈ Spdp(U). Hence dp(U) is a
regular cardinal.

Suppose that κ is κ-compact3, and let ⟨Xi | i < θ⟩ be a tower. Since any
tower has the < κ-intersection property, there is a κ-complete ultrafilter U
such that for every i, Xi ∈ U . Hence θ ∈ Spdp(U). In particular, the tower
number tκ ∈ Spdp(U) for some U . Since U is uniform, then it has to be that
tκ = dp(U) as any pseudo intersection in U must have size κ.

Proposition 4.10. Spdp(U) ⊆ SpT (U).

Proof. Fix a witnessing sequence ⟨Aα | α < θ⟩ ⊆ U is ⊆∗-decreasing. If U
was (θ, θ)-cohesive, then there would have been I ∈ [θ]θ such that A ∈ U is a
pseudo intersection of {Ai | i ∈ I}. We claim that A is a pseudo intersection
for the entire sequence. Indeed, let α < θ, then there is α′ ∈ I such that
α′ ≥ α. Hence A ⊆∗ Aα′ ⊆∗ Aα. Contradiction. □

The most general setup to examine the point spectrum is the Galois-
Tukey connections (see for example Blass’s Chapter in [15]). However, this
generality will not contribute to our specific interest in ultrafilters. Given a
directed set P, the lower character l(P) is the smallest size of an unbounded
family in P, while the upper character u(P) is the smallest size of a cofinal
subset of P. In our case, where P = (U,⊇) or P = (U,⊇∗) we get:

Proposition 4.11. For any uniform ultrafilter U , we have:

(1) u((U,⊇)) = u((U,⊇∗)) = ch(U).
(2) l(U,⊇) = crit(jU ) is the completeness degree of the ultrafilter U .
(3) l(U,⊇∗) = dp(U)

We have that crit(jU ) ≤ dp(U) ≤ ch(U).

Proof. (1), (2) are well known facts. To see (3), by minimality, l(U,⊇∗) ≤
dp(U). The other direction follows from the next simple lemma which implies
that for every sequence of length θ < dp(U) is ⊇∗-bounded. □

Lemma 4.12. For any sequence ⟨Xi | i < θ⟩ ⊆ U for θ ≤ dp(U), there is
⟨X∗

i | i < θ⟩ ⊆ U such that X∗
i ⊆ Xi for all i which is ⊆∗-decreasing.

Proof. We construct Xi by induction. At successor step, we let X∗
i+1 =

Xi+1 ∩ X∗
i . At limit steps α, since α < dp(U), the sequence ⟨X∗

i | i < α⟩
which by induction is ⊆∗-decreasing has a ⊆∗-lower bound A ∈ U . We let
X∗

α = A ∩Xα. □

3That is, every κ-cpomplete filter can be extended to a κ-complete ultrafilter.
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Recall that an ultrafilter U over κ ≥ ω is called a Pλ-point, if (U,⊇∗) is
λ-directs. A p-point is a Pκ+-point.

Corollary 4.13. dp(U) is the unique λ such that U is Pλ-point but not a
Pλ+-point.

Most of the following propositions regarding SpT (U), can be derived from
the general set up:

Proposition 4.14. Let U be a uniform ultrafilter, then:

(1) dp(U) ≤ cf(ch(U)) ∈ SpT (U).
(2) min(SpT (U)) = crit(jU ),min(SpT (U,⊇∗)) = dp(U).
(3) ch(U) is an upper bound for SpT (U).

Proof. For (1), we have already seen that cf(ch(U)) ∈ SpT (U) by Theorem
4.3. Suppose otherwise that cf(ch(U)) < dp(U) and fix ⟨θj | j < cf(ch(U))⟩
cofinal in ch(U). Let ⟨bi | i < ch(U)⟩ be a base for U . For each θj , by
minimality, there is xj ∈ U which is not ⊂∗-generated by ⟨bi | i < θj⟩. Since
cf(ch(U)) < dp(U) = l(U,⊇∗), the sequence ⟨xj | j < cf(ch(U))⟩ has a
pseudo-intersection x∗ ∈ U . Then x∗ cannot be ⊆∗-generated by any base
element, contradiction.

For (2), if θ < crit(jU ), or θ < dp(U) = l(U,⊇∗), then θ /∈ SpT (U) or
θ /∈ SpT (U,⊇∗) respectively, as any sequence of length θ is bounded. To see
for example that dp(U) ∈ SpT (U,⊇∗) (the proof that crit(jU ) ∈ SpT (U) is
completely analogous), we note that dp(U) ∈ Spdp(U) ⊆ SpT (U). To see
(3), let ch(U) < λ be regular. Then given any λ-many sets in U , λ-many of
them must contain the same element from a fixed base of size ch(U). Hence
U will be (λ, λ)-cohesive, namely λ /∈ SpT (U). □

Corollary 4.15. If dp(U) ̸= κ, then min(SpT (U) \ {κ}) = dp(U).

Corollary 4.16. If ch(U) is regular, then ch(U) = max(SpT (U)).

Note that using Theorem 3.1, we can characterize in terms of the ultra-
power supSpT (U) as the least µ such that for every λ > µ regular, MU

does not have a thin cover for j′′Uλ. Hence the previous corollary provides
an ultrapower characterization of ch(U), whenever this cardinal is regular.

Ultrafilters with a singular character exists, for example, if we add κ+κ+
-

many Cohen function to κ in a model of GCH, then in the extension the

2κ = κ+κ+
= ch(U) for all U on κ. However, in the model above we will

still have that ch(U) = sup(SpT (U)) and therefore the proposed ultrapower
characterization remains valid. Hence the following question is natural:

Question 4.17. Is it true that ch(U) = sup(SpT (U)) for any uniform ul-
trafilter U? how about κ-complete ultrafilters over κ?

In that direction Isbell proved [28] then if every singular cardinal is strong
limit then for every P, u(P) = sup(SpT (U)). However, this theorem is
irrelevant for us, since if ch(U) is singular then κ < ch(U) ≤ 2κ, and Isbell’s
theorem does not apply.
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One my wonder what is the possible cofinalities of ch(U). It is not hard
to prove that for κ-complete ultrafilters cf(ch(U)) ≥ κ+. If we give up κ-
completeness we will see in Proposition 5.6 that small cofinality is consistent.

Proposition 4.18. (1) For any two κ-complete ultrafilters over κ > ω,
SpT (U ·W ) = SpT (U) ∪ SpT (W ).

(2) For any two ultrafilter U,W on ω such that W ·W ≡T W , SpT (U ·
W ) = SpT (U) ∪ SpT (W ).

Proof. We prove (1), (2) together, since both U,W ≤T U ·W , SpT (U ·W ) ⊇
SpT (U)∪ SpT (W ). In the other direction, if λ ∈ SpT (U ·W ), then U ·W is
not (λ, λ)-cohesive. By Theorem 3.7 for (1), or Corollary 3.8 for (2), either
U or W are not (λ, λ)-cohesive, namely, λ ∈ SpT (U) ∪ SpT (W ). □

This cannot be improved, even just for p-point. Indeed, it is consistent
that there are p-point W,U on ω such that ch(W ), ch(U) < d (see the remark
following [19, Cor. 36] and other constructions where U ̸≥T ωω), and d is
regular. By Milovich [35], U ·W ≡T U ×W ×ωω and therefore d ≤T U ·W .
On the other hand, d /∈ SpT (U)∪SpT (W ) as both SpT (U) and SpT (W ) are
bounded by max(ch(U), ch(W )) < d.

4.2. Strong generating sequences and Pλ-points.

Definition 4.19. Let U be an ultrafilter over κ. A sequence ⟨Aα | α < λ⟩
such that:

(1) If α < β < λ then Aβ ⊆∗ Aα.
(2) For every X ∈ U there is α < λ such that Aα ⊆∗ X.

is called a strong generating sequence for U .

Remark 4.20. For example, if U is a p-point and 2κ = κ+ then U has a
strong generating sequence of length κ+.

Garti and Shelah (see [17] for details) noticed that assume κ is super-
compact and λ > κ is regular, it is consistent that there is a κ-complete
ultrafilter U over κ with a strong generating sequence of length λ.

Lemma 4.21. If U has a generating sequence of length λ, then λ > κ, and
U is a Pλ point. Moreover, dp(U) = λ.

Proof. Let ⟨Aα | α < λ⟩ be a strong generating sequence. Given any se-
quence ⟨Xα | α < θ⟩ where θ < λ, for every α < θ there is βα < λ such that
Aβα ⊆∗ Xα. Take β∗ = supα<θ βα, then Aβ∗ ⊇∗-bounds the Xα’s. For the
“Moreover” part, by Corollary 4.13 λ ≤ dp(U). As a generating sequence,
⟨Aα | α < λ⟩ cannot have a pseudo intersection. Hence λ ∈ Spdp(U), and
the equality holds. □

Corollary 4.22. If U has a strong generating sequence of length λ, then
dp(U) = ch(U) and

Spdp(U) = SpT (U) \ {κ} = {λ}.
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Proof. By Corollary 4.15 and Proposition 4.14,

κ < λ = dp(U) = min(SpT (U) \ {κ}) ≤ sup(SpT (U)) ≤ ch(U) ≤ λ.

Hence

{λ} ⊆ Spdp(U) ⊆ SpT (U) \ {κ} = {λ}.
□

The point spectrum characterizes the existence of strong generating se-
quences:

Lemma 4.23. Let U be a uniform ultrafilter on κ. U has a strongly gener-
ating sequence of length λ if and only if dp(U) = ch(U) = λ.

Proof. One direction follows from Corollary 4.22. In the other direction,
suppose that dp(U) = ch(U) = λ, given a base ⟨Xi | i < λ⟩ for U , we may
apply Lemma 4.12 to the base to obtain a strong generating sequence for U
of length λ. □

Corollary 4.24. If κ is supercompact cardinal, it is consistent that κ carries
a κ-complete ultrafilter which is (κ+, κ+)-cohesive.

In the next section we address the question of consistency strength of such
ultrafilters.

5. Consistency results

Although the existence of a long generating sequence seems stronger than
Kanamori’s question, it is actually equivalent:

Theorem 5.1. For any λ > κ The following are equicosistent:

(1) there exists of an ultrafilter with a strong generating sequence of
length λ.

(2) there is a κ-complete ultrafilter U with min(SpT (U) \ {κ}) = λ; U is
(µ, µ)-cohesive for every regular µ ∈ (κ, λ).

(3) there exists of a κ-complete ultrafilter U with dp(U) = λ.
(4) There exists a Pλ+-point over κ, and λ is regular.

Proof. (1) implies (2) by Corollary 4.22. To see that (2) implies (3), let
U witness (2), and let U0 ≤RK U be normal. Then Sp∗T (U0) ⊆ Sp∗T (U),
and dp(U0) > κ. Hence dp(U0) ≥ min(SpT (U) \ {κ}) = λ. To see that (3)
implies (4), by 4.13, U is a Pλ+-point and we already made the observation
that dp(U) must be regular. Finally for (4) implies (1), suppose that U
is a Pλ+-point for some regular λ > κ, then U a κ-complete ultrafilter.
Levi collapsing ch(U) to be λ (if needed) is a λ-closed forcing, and does not
introduce new < λ-sequence. Hence U is still a κ-complete ultrafilter in the
extension. Moreover, we have dpV [G](U) = λ = chV [G](U). Hence by Lemma
4.23, U had a strong generating sequence in V [G]. □
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In particular, the existence of a κ-complete (κ+, κ+)-cohesive ultrafilter
is equiconsistent with the existence of an ultrafilter having a strong generat-
ing sequence of length κ++- a principle which we conjecture having higher
consistency strength than o(κ) = κ++.

Next we would like to treat the possible complexity of SpT (U). First, we
would like to rise the following question:

Question 5.2. Is it consistent that SpT (U) is not an interval of regular
cardinals?

A natural approach would be to take two ultrafilter U,W such that
U has a strong generating sequence of length κ+ (for example) and W
has a strong generating sequence of length κ+++. By proposition 4.18
SpT (U · W ) = SpT (U) ∪ SpT (W ) = {κ+, κ+++}. We do not know if it
is consistent to have two such ultrafilters. However, the usual way to obtain
such ultrafilters; that is, to iterate Mathias forcing λ-many times is doomed.
Indeed if we iterate the above forcing to produce one ultrafilter with a strong
generating sequence of length λ, and then iterate again λ′-many times to
generate an ultrafilter with a strong generating sequence of length λ′. If λ, λ′

have different cofinalities, any ultrafilter in the generic extension strongly
generated by cf(λ)-many sets would have to be generated from an inter-
mediate step of the iteration. The following lemma assures that adjoining
even one Mathias generic set prevents ultrafilters from being generated by
the ground model.

Lemma 5.3. Let aG be an MU -generic set. Denote by

R =
⋃
i<κ

[(aG)2i, (aG)2i+1).

Then both R and κ \ R cannot contain an unbounded set from the ground
model.

Proof. Suppose otherwise that X ∈ V and X ⊆ R (the proof for κ \ R is
similar). Let ⟨a,A⟩ ∈ G be a condition such that ⟨a,A⟩ ⊩MU

X̌ ⊆ R∼. We
may assume that max(a) = a2i+1 for some i < κ (namely otp(a) is an even
successor ordinal). Since X is unbounded, there is x ∈ X \ a2i+1 + 1, and
since A ∈ U , there is α ∈ A \X. extend ⟨a,A⟩ to ⟨a ∪ {α}, A \ α+ 1⟩. This
condition forces that x ∈ X \R, contradiction. □

Lemma 5.4. Let V [G] be the usual Cohen extension where we added κ++-
many Cohen generic functions from κ to 2 to a model of 2κ = κ+. Then any
uniform ultrafilter U ∈ V [G] is not (κ++, κ+)-cohesive. In particular it is
not (κ+, κ+)-cohesive and not (κ++, κ++). Namely SpT (U) ⊇ {κ, κ+, κ++}.

Proof. Let G be V -generic for Add(κ, κ++). Let U ∈ V [G] be an ultrafilter
and let ⟨Xα | α < κ++⟩ be the Cohen mutually generic subsets of κ added by
G. Note that for every α, either Xα ∈ U or Xc

α ∈ U . Since the complement
of a Cohen generic set is also Cohen generic, we may assume that ⟨Xα | α <
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κ++⟩ ⊆ U . Let us prove that the sequence of Cohen generics witnesses that
U is not (κ++, κ+)-cohesive. Suppose towards a contradiction that for some
I of size κ+, Y =

⋂
{Xi | i ∈ I} ∈ U . In particular Y is unbounded in κ

(since U is uniform). Since Y ⊆ κ, by κ+-c.c, there is J ⊆ κ++ such that
|J | = κ and Y ∈ V [G ↾ J ]. Pick any β ∈ I \ J which exists since |I| > |J |.
By mutual genericity, Xi is generic over V [G ↾ J ], in particular Xi cannot
contain a set of size κ from V [G ↾ J ], contradicting Y ⊆ Xi. □

By Woodin, starting with a model of GCH and a measurable κ with
Mitchell order o(κ) = κ++, it is possible to get a generic extension in which
κ measurable and κ++-many mutually generic Cohen functions (over some
intermediate model where 2κ = κ+).

Corollary 5.5. In the model above, for every ultrafilter U , dp(U) < ch(U).

Clearly, the previous argument generalized for λ > κ++ to produce a
model where 2κ = λ and for every uniform ultrafilter U over κ, U is
not (λ, κ+)-cohesive (so also all the instance of (ρ, µ)-cohesiveness fail for
κ+ ≤ µ ≤ ρ ≤ λ). This improves Theorem 4.2 from [8], which proves
this consistency (with the same model!) only for normal ultrafilters. The
argument from the previous lemma can be used to give an example of an
ultrafilter with a character of small cofinality:

Proposition 5.6. Relative to a measurable cardinal, it is consistent that
there is a uniform ultrafilter on a regular cardinal κ with cf(ch(U)) = ω1

Proof. Raghavan and Shelah [37] proved that after adding κ+ω1-many Cohen
reals, we can find a uniform ultrafilterD in the extension with ch(D) ≤ κ+ω1 .
Let us prove that in fact ch(D) = κ+ω1 . We think of the forcing Add(κ+ω1 , ω)
as adding κ+ω1-many characteristic sets to κ ⟨Xα | α < κ+ω1⟩ with finite
approximation. The ultrafilter D have to pick for each α < κ+ω1 either
Xα ∈ D or κ \ Xα ∈ D. As in the proof of 5.4, we may assume that for
every α < κ+ω1 , Xα ∈ D. If ch(D) < κ+ω1 , we could have found ω1-many
sets Xα for α ∈ I such that

⋂
α∈I Xα ∈ D. Let Y be any countable subset

of
⋂

α∈I Xα. Using the chain condition, we see that Y belongs the extension
by countably many of the Cohen reals, and therefore to the extension by
countably many of the Xα’s. That is Y ∈ V [⟨Xα | α ∈ J⟩] where J ∈ [I]ω.
Pick any α∗ ∈ I \ J . Then Xα is generic over V [⟨Xα | α ∈ J⟩]. However,
by genericity, the set Xα∗ is only finitely approximated in V [⟨Xα | α ∈ J⟩]
which produces a contradiction. □

Question 5.7. Is there a strong limit regular cardinal κ carrying a uniform
ultrafilter U such that cf(ch(U)) < κ?

What about Spdp(U) in the Cohen extension? Alan Dow informed us
that Kunen proved in his master thesis that not only there are no towers
of length ℵ2, but there are no ⊆∗ chains of ordertype ℵ2 in the extension
by the finite support product of ℵ2-many reals. He also suggested a simpler
argument for towers which generalizes to regular uncountable cardinals. We
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need a slight strengthening of that argument to show that Cohen forcing
does not add chains modulo bounded of length κ++ to a normal ultrafilter
U which are unbounded in (U,⊇∗).

Lemma 5.8. Suppose 2κ = κ+. After forcing with Add(κ, κ++), there is
no normal ultrafilter with a sequence ⟨Ai | i < κ++⟩ ⊆ U which is ⊆∗-
decreasing, and unbounded in (U,⊆∗). Equivalently, κ++ /∈ Spdp(U).

Proof. Suppose otherwise and let U̇ , Ȧ be names and p ∈ Add(κ, κ++) forc-

ing all the relevant information. We may assume that A = ⟨Ȧi | i < κ++⟩
and U = ⟨Ẋi | i < κ++⟩ are sequences of nice names, and p forces that
U is an ultrafilter and A is ⊆∗-decreasing and unbounded in (U ,⊆∗). Let
M ≺ Hθ be an elementary submodel of size κ+, closed under κ-sequence
with

p, ⟨Ẋi | i < κ++⟩, ⟨Ȧi | i < κ++⟩... ∈ M.

Also assume that M ∩ κ++ = δ ∈ κ++. First we note that for each i < δ,
Ẋi, Ȧi ∈ M is a nice name, and since M is closed under κ-sequnces and by
κ+-cc, Ẋi and Ȧi are in fact names of Add(κ, δ).

Claim 5.9. In V [G ↾ δ] we have:

(1) {(Ẋi)G↾δ | i < δ} is the ultrafilter Uδ = (U̇)G ∩ V [G ↾ δ]
(2) Uδ is normal.

(3) ⟨(Ȧi)G↾δ | i < κ++⟩ is a tower in Uδ.

□

Proof of Claim. Clearly, {(Ẋi)G↾δ | i < δ} ⊆ Uδ. Hence it suffices to prove

that {(Ẋi)G↾δ | i < δ} is an ultrafilter in V [G ↾ δ]. Suppose not, and let Ẋ
be a nice name such that for some q ≥ p, q ∈ G ↾ δ,

q ⊩Add(κ,δ) Ẋ, κ \ Ẋ /∈ {Ẋi | i < δ}.

Again, by closure of M to κ-sequences and the κ+-cc, Ẋ, q ∈ M . Hence for
every i < δ, M |= q ⊩ Ẋ ̸= Ẋi ∧ κ \ Ẋ ̸= Ẋi. Since κ++ ∩M = δ,

M |= q ⊩ “U̇ is not an ultrafilter”,

contradiction. Normality just follows from the κ+-cc and the fact that co-
finality of δ is κ+. A similar argument shows that ⟨(Ȧi)G | i < κ++⟩ is a
tower in Uδ. □

Note that Ȧδ is forced by p to be ⊆∗-bound, so by κ+-cc, over the model
V [G ↾ δ] we can find κ-many coordinates I ⊆ [δ, κ++) such that in V [G ↾
δ][G ↾ I] we will have a ⊆∗-bound. Note that G ↾ I is forcing equivalent
to the extension by a single Cohen Add(κ, 1). Hence it suffices to prove the
following claim:

Claim 5.10. Suppose that W is a normal ultrafilter (p-point is enough) on
κ, ⟨Ai | i < κ+⟩ is a tower in W. Then adding a single Cohen function to κ
does not add pseudo intersection X for ⟨Ai | i < κ+⟩ which is positive with
respect to the filter generated by W in the extension.
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Proof of claim. Suppose otherwise, the Ȧ is a name and p a condition such
that

p ⊩ “Ȧ ∈ (W)+ is a pseudo intersection of ⟨Ai | i < κ+⟩”,
where W is the filter generated by W in the extension. For each q ≥ p let
Aq = {α < κ | ∃r ≥ q, r ⊩ α ∈ Ȧ}. Then Aq is in the ground model cover

of Ȧ, hence positive for W. Therefore Aq ∈ W. Since Add(κ, 1) has size
κ, and W is assumed to be a p-point, there is A∗ ∈ W which is a pseudo
intersection for all the Aq’s. Since Ai is a tower, there is i∗ < κ+ such that

A∗ \ Ai is unbounded in κ. Find p0 ≥ p such that p0 ⊩ Ȧ \ ξ ⊆ Ai. Find
ξ′ such that A∗ \ ξ′ ⊆ Ap0 and find ρ > ξ, ξ′ such that ρ ∈ A∗ \ Ai. Hence

ρ ∈ Ap0 and by definition there is p′ ≥ p0 forcing that ρ ∈ Ȧ. But ρ /∈ Ai

and p′ is suppose to force also that Ȧ \ ξ ⊆ Ai, contradiction. □

The following is due to Gitik:

Theorem 5.11. The consistency strength of the existence of a Pκ++-point
is at least o(κ) = κ++ + κ+.

Question 5.12. What is the consistency strength of having κ++ ∈ Spdp(U)
for a κ-complete ultrafilter U?

Question 5.13. What is the consistency strength of the existence of a Pλ-
point for λ > κ+?

Equivalently,

Question 5.14. What is the consistency strength of the existence of a κ-
complete (κ+, κ+)-cohesive ultrafilter over κ?
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32. Péter Komjáth and Vilmos Totik, Ultrafilters, The American Mathematical Monthly

115 (2008), no. 1, 33–44.
33. Kenneth Kunen, Ultrafilters and independent sets, Transactions of the American

Mathematical Society 172 (1972), 299–306.
34. David Milovich, Tukey classes of ultrafilters on ω, Topology Proc. 32 (2008), 351–362.
35. , Forbidden rectangles in compacta, Topology Appl. 159 (2012), no. 14, 3180–

3189.
36. Dana Strauss Neil Hindiman, Algebra in the stone-cech compactification, De Gruyter

Textbook, 2012.
37. Dilip Raghavan and Saharon Shelah, A small ultrafilter number at smaller cardinals,

Arch. Math. Logic 59 (2020), 325–334.
38. Jürgen Schmidt, Konfinalität, Zeitschrift für Mathematische Logik und Grundlagen

der Matematik 1 (1955), 271–303.



28 TOM BENHAMOU

39. Stevo Todorcevic, Directed sets and cofinal types, Trans. Amer. Math. Soc. 290 (1985),
no. 2, 711–723.

40. Fanxin Wu Tom Benhamou, Diamond principles and tukey-top ultrafilters on a count-
able set, submitted (2024), arXiv:2404.02379.

41. JOHN W. TUKEY, Convergence and uniformity in topology. (am-2), Princeton Uni-
versity Press, 1940.

(Benhamou)Department of Mathematics, Rutgers University, New Brunswick
,NJ USA

Email address: tom.benhamou@rutgers.edu


	1. Introduction
	Notations & global assumptions

	2. A characterization of the Tukey order in terms of the ultrapower
	3. On Cohesive ultrafilters
	4. Depth and point spectrum of ultrafilters
	4.1. The point spectrum of an ultrafilter
	4.2. Strong generating sequences and P-points.

	5. Consistency results
	References

