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1. Introduction

For a cardinal λ, a point x in a topological space X is called a Pλ-point if the inter
section of fewer than λ-many open neighborhoods of x contains an open neighborhood 
of x. Of course, every isolated point is a Pλ-point for every λ. Interpreting this definition 
in the space U(Y ) of uniform ultrafilters on Y gives rise to the notion of a Pλ-point 
ultrafilter, which translates to the following combinatorial condition: a uniform ultrafil
ter U over Y is a Pλ-point if the poset (U,⊇∗) is λ-directed.3 Namely, for any μ < λ

and any collection ⟨Xi | i < μ⟩ ⊆ U there is X ∈ U such that X ⊆∗ Xi for all i < μ. 
This type of ultrafilter on ω has been studied in numerous papers (e.g. [8,9,12,29]). On 
regular uncountable cardinals, relatively little is known. Baker and Kunen [1] have some 
constructions of such ultrafilters and lately the first author [5] used such ultrafilters to 
address a question of Kanamori regarding cohesive ultrafilters from [23].

The notion of a Pλ-point ultrafilter has appeared naturally in classical constructions. 
The most relevant one here is due to Kunen [24, Chapter VIII Ex. (A10)], which used 
a finite support iteration of the Mathias forcing (see 3.9) to construct an ultrafilter 
on ω which is generated by fewer than 𝔠-many sets. The Mathias forcing associated to 
an ultrafilter U ∈ β(ω) \ ω is a ccc forcing that adds a subset of ω that is eventually 
included in every set in U . By iterating Mathias forcings associated to a carefully chosen 
sequence of ultrafilters, Kunen adds a ⊆∗-decreasing sequence of sets, and by performing 
an iteration whose length λ has uncountable cofinality, he produces a sequence that 
generates an ultrafilter in the generic extension. This ultrafilter is a Pcf(λ)-point which 
is moreover simple: a simple Pμ-point is an ultrafilter U that has a generating sequence 
⟨Xi | i < μ⟩ ⊆ U that is ⊆∗-decreasing.

In an unpublished work, Carlson generalized Kunen’s construction to construct a 
simple Pλ-point on a measurable cardinal, starting from a supercompact cardinal. This 
establishes the consistency of a κ-complete ultrafilter over a measurable cardinal κ which 
is generated by fewer than 2κ-many sets. The question of the consistency strength of a 
uniform ultrafilter on a measurable cardinal κ which is generated by fewer than 2κ-many 
sets remains open.

Cardinal characteristics at measurable cardinals. Unlike the situation on countable sets, 
the generalized Kunen method is currently the only known method to separate the gen
eralized ultrafilter number 𝔲κ from the powerset of a measurable cardinal and therefore 
plays an important role in the landscape of the recent interest in generalized cardinal 
characteristics [3,4,13,19,25,33].

There are several known techniques for controlling generalized cardinal invariants 
[17,14,11], all of which are incompatible with controlling the ultrafilter number. Brook
Taylor, Fischer, Friedman, and Montoya [13] used variations of the generalized Kunen 
construction to establish that it is consistent for many generalized cardinal characteristics 

3 For A,B ⊆ Y , the relation A ⊆∗ B stands for |A \ B| < |Y |.
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to be equal yet smaller than 2κ. Their forcing adds a simple Pλ-point. In Section §2, we 
show that the existence of a simple Pλ-point alone implies the equality of many of these 
characteristics.4 More precisely, we prove the following theorem:

Theorem 1.1. Suppose κ < λ are regular uncountable cardinals and there is a simple 
Pλ-point on κ. Then

𝔲κ = 𝔲comκ = 𝔟κ = 𝔡κ = 𝔰κ = 𝔯κ = λ.

In particular, if μ ̸= λ is regular, then there are no simple Pμ-points on κ.

The effect of a simple Pλ-point on cardinal characteristics on ω was already noticed 
by Nyikos [29] and further investigated by Blass and Shelah [9], and Brendle–Shelah 
[12]. Nyikos proved that if there is a simple Pλ-point on ω, then either λ = 𝔟κ or 𝔡κ. In 
sharp contrast to Theorem 1.1, Bräuninger–Mildenberger [10] recently showed that it is 
consistent for there to be a simple Pλ-point and a simple Pμ-point for μ ̸= λ.

Theorem 1.1 shows that new methods are needed to obtain a model with a small 
ultrafilter number 𝔲κ which is not, for example, equal to the bounding number 𝔟κ or 
the dominating number 𝔡κ. (Of course, one can add many Cohen functions to κ, which 
blows up 𝔲κ to 2κ while preserving 𝔟κ.)

Question 1.2. Is it consistent with a measurable cardinal to have 𝔡κ < 𝔲κ < 2κ? how 
about 𝔟κ < 𝔲κ < 2κ?

Another method for dealing with cardinal characteristics at the level of a measurable 
cardinal is the extender-based Magidor–Radin forcing of Merimovich [26]. In particular, 
Ben-Neria–Gitik [4] and Ben-Neria–Garti [3] used this technique to obtain results re
garding the splitting number 𝔰κ and reaping number 𝔯κ at this level. To generalize the 
above analysis of cardinal characteristics to this framework, we introduce the notion of 
a simple pseudo-Pλ-point (see Definition 2.24) and show:

Theorem 1.3. In the model of [3], there is a simple pseudo-Pκ+-point.

Theorem 1.4. If there is a simple pseudo-Pλ-point, then

λ = π𝔲κ = 𝔟κ = 𝔡κ = 𝔰κ = 𝔯κ.

We also reduce the large cardinal upper bound of the claim ``κ is measurable and 
𝔯κ < 2κ'' below o(κ) = κ+3.

4 Let us mention that in the model of [13], there are other characteristics, such as 𝔦κ, 𝔭κ, 𝔞κ, 𝔱κ, and 
various invariants of category, that also coincide with the value of λ. We do not address these cardinals in 
this paper.
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The consistency strength of a Pκ++-point. [5] raises the question: what is the consistency 
strength of the existence of a Pλ-point for λ > κ+? As we mentioned, it is possible to 
start with an indestructible supercompact cardinal and force such an ultrafilter, but this 
is clearly an overkill since a supercompact cardinal cannot be the first α such that α
carries a Pα++-point. A trivial lower bound comes from the fact that we have to blow up 
the powerset of a measurable cardinal for such an ultrafilter to exist, and by Mitchell--
Gitik [27], this implies an inner model with a measurable cardinal κ of Mitchell order 
o(κ) = κ++. Gitik proved [5, Thm. 5.2] that o(κ) = κ++ is not enough and at least 
an inner model with a μ-measurable cardinal is required.5 Here we improve this lower 
bound to a 2-strong cardinal, and more generally:

Theorem 1.5. Suppose that the core model K exists, and that in V there is a measurable 
cardinal κ carrying a Pλ-point for some λ > κ+ regular. Then there is an inner model 
with a λ-strong cardinal.

The proof uses an analysis of the iterated ultrapower of K arising from the restriction 
of jU to K, where U is a Pλ-point.

Finally, we provide three applications of this type of lower bound. The first is to show 
that the statement that 𝔱κ > κ+, where 𝔱κ is the generalized tower number associated 
to a measurable cardinal κ, has consistency strength greater than o(κ) = κ++. This is 
related to the result of Zapletal [33] and Ben-Neria–Gitik [4] that the statement ``𝔰κ > κ+

for a regular κ'' is equiconsistent with o(κ) = κ++. Since 𝔱κ ≤ 𝔰κ, then 𝔱κ > κ+ for a 
regular cardinal κ is also at least at the level of o(κ) = κ++. The following improves this 
when adding the measurability of κ:

Theorem 1.6. Suppose that κ is measurable and 𝔱κ > κ+ then there is an inner model 
with a μ-measurable.

The second application is to show that the generalization of Kunen’s construction 
cannot be carried from the assumption of o(κ) = κ++:

Corollary 1.7. Let κ be measurable in V , and U ∈ V be a κ-complete ultrafilter over κ. 
Suppose that V ⊆ M is a larger model in which κ is measurable and M contains and V
generic set for the generalized Mathias forcing MU . Then in K there is a μ-measurable 
cardinal.

Hence if one wishes to obtain a small ultrafilter number at a measurable cardinal from 
optimal assumptions, then a new method is required.

The third application relates to the filter games of Holy-Schlicht [22], Nielsen-Welch 
[28] and Foreman-Magidor-Zeman [18]. These games revolve around the following idea: 

5 A μ-measurable cardinal is cardinal κ which is the critical point of an elementary embedding j : V → M

such that {X ⊆ κ | κ ∈ j(X)} ∈ M . Such a cardinal is a limit of cardinals δ with o(δ) = 22δ

.
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two players, Player I and Player II take turns. First, Player I plays a submodel M of 
H(κ+) of size κ and Player II responds with an object that determines a κ-complete (or 
even normal) ultrafilter on that model. In one variant of the game, the object played by 
Player II is an M -ultrafilter, but in another variant, Player II is required to play a single 
set, external to M , that generates an M -ultrafilter modulo bounded subsets of κ. In the 
next round, Player I extends M to a model M ′ and Player II must extend the previous 
ultrafilter to measure sets in M ′.

Under the assumption of 2κ = κ+, the existence of a winning strategy for Player II 
(in either of the games) is equivalent to κ being measurable. Here, we consider these 
games of length γ, where γ ∈ [κ+, 2κ). Our main observation is that the consistency 
strength of a winning strategy for Player II in the game where they play filters is still 
just a measurable cardinal, and that the consistency strength jumps past o(κ) = κ++

(again, involving μ-measures) if Player II is required to play sets.
This paper is organized as follows:

• In Section 2, we present our results regarding cardinal characteristics and simple Pλ
points. In Subsection 2.1 we focus on the π-character variations and in Subsection 
2.2 we consider the Extender-based Magidor-Radin model.

• In Section 3, we provide our lower bound on the existence of a Pλ-point.
• In Sections 3.3, 3.2, 3.4 we prove our three applications.

Notation. For a set X and a cardinal α we let [X]α = {Y ⊆ X | |Y | = α}. For A ∈ [κ]κ we 
let fA : κ → κ be the increasing enumeration of the set A. Namely, fA is the inverse of the 
transitive collapse of A. Given two ultrafilters U,W on X,Y resp. we say that U ≤RK W

if there is a function f : Y → X such that A ∈ U iff f−1[A] ∈ W . A measurable cardinal 
is an uncountable cardinal κ such that there is a non-trivial κ-complete ultrafilter on κ. 
Given an ultrafilter U over X, we let jU : V → Ult(V,U) ≃ MU be the usual ultrapower 
embedding associated to an ultrafilter, and MU is the Mostowski collapse of Ult(V,U)
(which we identify with MU from this point on, whenever Ult(V,U) is well-founded). 
A λ-supercompact cardinal is a cardinal κ such that there is a κ-complete fine normal 
ultrafilter on Pκ(λ). A supercompact cardinal is a λ-supercompact for every λ. A λ-strong 
cardinal is a cardinal κ such that there is an elementary embedding j : V → M with 
crit(j) = κ, M is closed under κ-sequences and Vκ+λ ⊆ M . A μ-measurable cardinal 
was defined in footnote 5. This is equivalent to the existence of a μ-measure; that is, a 
κ-complete ultrafilter U over κ such that {X ⊆ κ | κ ∈ jU (X)} ∈ MU .6

6 For the non-trivial direction, fix j : V → M as in footnote 5. Since |Vκ| = κ, it suffices to find an 
ultrafilter U over Vκ such that {X ⊆ κ : κ ∈ jU (X)} ∈ MU . To do this, let U be the ultrafilter over 
Vκ derived from the point D = {X ⊆ κ | κ ∈ j(X)} ∈ M , noting that D ∈ j(Vκ). Let k : MU → M
be the factor embedding given by k([f ]U ) = j(f)(D). Let D̄ = [id]U . Then k(D̄) = D. In particular, 
κ =

⋃︁
D = k(

⋃︁
D̄) ∈ ran(k), and it follows that crit(k) > κ. Therefore k is the identity on P (κ), and so 

the fact that k(D̄) = D implies D̄ = k−1[D] = D. Finally, if X ⊆ κ, we have κ ∈ jU (X) if and only if 
κ = k(κ) ∈ k(jU (X)) = j(X); so {X ⊆ κ : κ ∈ jU (X)} = D ∈ MU , as desired.
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If M is a transitive model of ZFC− and X ∈ M , an M -ultrafilter on X is an ultrafilter 
U on the Boolean algebra P (X)∩M . The ultrapower of M by U is the quotient of MX∩M
under the equivalence relation associated to U . An M -normal ultrafilter (also known as 
an M -normal M -ultrafilter) is an M -ultrafilter U on an ordinal κ ∈ M such that for any 
sequence ⟨Aα⟩α<κ ∈ M , Δα<κAα ∈ U .

If κ is a cardinal and U is an M -ultrafilter, U is κ-complete if U extends to a κ
complete filter in V , or equivalently, if the intersection of fewer than κ elements of U is 
nonempty. In general, this is distinct from the notion of M -κ-completeness, which only 
requires that if 

⋂︁
α<η Aα ∈ U whenever ⟨Aα⟩α<η ∈ U<κ ∩ M . Since the models M we 

consider are usually closed under sequences of length less than κ, this distinction will 
not be important here.

2. Crushing cardinal characteristics

Let κ be a regular uncountable cardinal. We denote by κκ the set of all functions 
f : κ → κ. On κκ we have the almost everywhere domination order denoted by ≤∗, and 
defined by

f ≤∗ g iff ∃α < κ ∀α ≤ β < κ, f(β) ≤ g(β).

Definition 2.1. The generalized bounding and dominating numbers are defined as follows:

(1) 𝔟κ = min{|𝒜| | 𝒜 ⊆ κκ is unbounded in (κκ,≤∗)}.
(2) 𝔡κ = min{|𝒜| | 𝒜 ⊆ κκ is dominating in (κκ,≤∗)}.

These cardinal invariants can be characterized using the club filter

Cubκ = {A ⊆ κ | ∃C closed unbounded in κ, C ⊆ A}.

The almost inclusion order denoted by ⊆∗ is defined by A ⊆∗ B iff ∃α < κ,A \ α ⊆ B.

Proposition 2.2 (Folklore). 

(1) 𝔟κ = min{|𝒜| | 𝒜 ⊆ Cubκ is unbounded in (Cubκ,⊇∗)}.
(2) 𝔡κ = min{|𝒜| | 𝒜 ⊆ Cubκ is cofinal in (Cubκ,⊇∗)}.

Proof. For (2), see [6, Claim 4.8]. For (1), let us first prove that 𝔟κ is bounded above 
by the size of any unbounded subset of (Cubκ,⊇∗). Let 𝒜 ⊆ Cubκ we claim that the 
set {fA | A ∈ 𝒜} of increasing enumerations of sets in 𝒜 is unbounded in (κκ,≤∗). 
Otherwise, let f be a ≤∗ bound and let Cf be the club of closure points of f . We 
claim that Cf ⊆∗ A for all A ∈ 𝒜. Indeed, let α be such that for every α ≤ β < κ, 
fA(β) ≤ f(β). If γ ∈ Cf \ α, then for every β ∈ γ \ α, β ≤ fA(β) ≤ f(β) < γ. Since 
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fA(β) ∈ A, it follows that γ is a limit point of A. Since A is a club, γ ∈ A. This proves 
Cf \ α ⊆ A, as desired.

For the opposite inequality, suppose that 𝒮 is unbounded in (κκ,≤∗). Let {Cf | f ∈ 𝒮}
be the collection of clubs of closure points of elements of 𝒮. We claim that {Cf | f ∈ 𝒮}
is unbounded. Otherwise, suppose that C ⊆∗ Cf for all f ∈ 𝒮. Define g(α) = fC(α+ 1). 
We claim that g dominates 𝒮, which would lead to a contradiction. To see this, let α be 
such that fC(α) = α = fCf

(α) and C \ α + 1 ⊆ Cf \ α + 1. This implies that for β ≥ α, 
fCf

(β) ≤ fC(β). Therefore given β > α, notice that β < fCf
(β + 1) ∈ Cf , hence

f(β) < fCf
(β + 1) ≤ fC(β + 1) = g(β) □

Given an ultrafilter U on a cardinal κ ≥ ω, let jU : (V,∈) → (MU ,∈U ) be the usual 
ultrapower construction. Then (jU(κ),∈U ) = (κκ/U,<U ) is a linear order and cfV (jU (κ))
is a regular cardinal.

Claim 2.3. For every uniform ultrafilter U over κ, 𝔟κ ≤ cfV (jU (κ)) ≤ 𝔡κ.

Proof. Clearly, if 𝒜 is dominating in (κκ,≤∗), then {[f ]U | f ∈ 𝒜} is cofinal in jU (κ). 
On the other hand if {[fα]U | α < λ} is cofinal in jU (κ). Then it must be unbounded 
in (κκ,≤∗), since if g : κ → κ was a bound in ≤∗, then [g]U < jU (κ) would bound 
{[fα]U | α < λ}, which is supposed to be cofinal. □

Given a filter F on κ we say that ℬ is a base for F if ℬ ⊆ F and for every A ∈ F , 
there is B ∈ ℬ such that B ⊆∗ A. Define:

(1) 𝔠𝔥(F ) = min{|ℬ| | ℬ is a base for F} is the character of F .
(2) 𝔲κ = min{𝔠𝔥(U) | U is a uniform ultrafilter on κ} is the ultrafilter number
(3) 𝔲comκ = min{𝔠𝔥(U) | U is a κ-complete ultrafilter on κ} is the complete ultrafilter 

number

The depth spectrum, introduced in [5], is the set Spdp(F ) of all regular cardinals λ for 
which there exists a ⊆∗-decreasing sequence ⟨Xi | i < λ⟩ ⊆ F with no ⊆∗-lower bound 
in F . Also define the depth of F by:

𝔱(F ) = min Spdp(F )

Remark 2.4. Note that 𝔱(F ) is a regular cardinal. The notation emphasizes that 𝔱(F )
is an analog of the well-known tower number. In [5, Prop. 4.14] it was shown that 
𝔱(F ) = min(SpT (F,⊇∗)) where SpT (F,⊇∗) = {λ ∈ Reg | λ ≤T (F,⊇∗)}. Here ≤T is the 
well-known Tukey order (see for example [15]).

In the case F = Cubκ, it is not hard to see that 𝔱(Cubκ) = 𝔟κ and 𝔠𝔥(Cubκ) = 𝔡κ.
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Claim 2.5. Let U,W be ultrafilters. If U ≤RK W then

𝔱(W ) ≤ 𝔱(U), 𝔠𝔥(U) ≤ 𝔠𝔥(W ).

Proof. The right inequality is well-known, and the left follows from the fact that if 
U ≤RK W implies that (U,⊇∗) ≤T (W,⊇∗) (see for example [16, Fact 1]) and therefore 
SpT (U,⊇∗) ⊆ SpT (W,⊇∗) which ultimately implies 𝔱(W ) ≤ 𝔱(U). □
Proposition 2.6. Let U be a κ-complete ultrafilter over κ. Then:

(1) 𝔡κ ≤ 𝔠𝔥(U).
(2) 𝔱(U) ≤ 𝔟κ

Proof. For (1), let U∗ be a normal ultrafilter RK-below U , then 𝔠𝔥(U∗) ≤ 𝔠𝔥(U). Let ℬ
be a base for U∗ and 𝒞 = {b | b ∈ ℬ} ⊆ Cubκ. We claim that 𝒞 is a generating set for 
Cubκ. Given any club C, since U∗ is normal, C ∈ U∗ and therefore there is b ∈ ℬ such 
that b ⊆∗ C. Since C is closed, b ⊆∗ C, as wanted.

For (2), again we may assume that U is normal. Note that every sequence of clubs 
⟨Ci | i < κ⟩ for κ < 𝔱(U) has a lower bound in U and therefore the closure of that lower 
bound would be a club-bound. Hence 𝔱(U) ≤ 𝔟κ. □
Lemma 2.7. 𝔟κ ≤ 𝔲κ ≤ 𝔲comκ

Proof. The nontrivial inequality 𝔟κ ≤ 𝔲κ will follow from a more general fact regarding 
the reaping number in Lemma 2.22 and Theorem 2.23. □
Definition 2.8. For a uniform filter F over κ, we say that:

(1) F is a Pλ-point if (F,⊇∗) is λ-directed. Namely, if for every 𝒜 ⊆ F , |𝒜| < λ, there 
is B ∈ F such that B ⊆∗ A for all A ∈ 𝒜.

(2) F is a simple Pλ-point if there is a ⊆∗-decreasing sequence ⟨Xi | i < λ⟩ ⊆ F that 
forms a base for F .

(3) 𝔭(F ) = min{λ | F is not a Pλ+-point}.

Note that F is a simple Pλ-point if and only if F is a simple Pcf(λ)-point. Hence we will 
only consider simple Pλ-point for regular λ’s. Also, note that if U is a uniform ultrafilter 
that is a simple Pλ-point over κ, then λ must be at least κ+, and therefore U must be 
κ-complete. It was proven in [5] that 𝔱(F ) = 𝔭(F ). In [5, Lemma 4.23] it was proven that 
F is a simple Pλ-point if and only if 𝔱(F ) = 𝔠𝔥(F ) = λ.

Corollary 2.9. For a regular cardinal λ, Cubκ is a simple Pλ-point if and only if λ =
𝔡κ = 𝔟κ.
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Theorem 2.10. If κ < λ are regular uncountable cardinals and U is a simple Pλ-point 
ultrafilter on κ, then λ = 𝔡κ = 𝔟κ = 𝔲κ = 𝔲comκ .

Proof. Indeed, by Proposition 2.6(2), and Lemma 2.7, λ = 𝔱(U) ≤ 𝔟κ ≤ 𝔲κ. Also, by 
2.6(1) 𝔡κ ≤ 𝔠𝔥(U) = λ and clearly 𝔲κ ≤ 𝔲comκ ≤ 𝔠𝔥(U) = λ. So by the fact that U is a 
simple Pλ-point we get the desired equality. □
Corollary 2.11. If μ and λ are regular and there are simple Pλ-point and Pμ-point ultra
filters over κ > ω, then μ = λ.

This is not the case on ω. Nyikos [29] showed that the set of regular cardinals λ for 
which there is a simple Pλ-point ultrafilter on ω has cardinality at most two; recently, 
Bräuninger–Mildenberger [10] proved a spectacular result that it is consistent with ZFC 
that there are simple Pℵ1-point and Pℵ2-point ultrafilters on ω.

Corollary 2.12. For a regular uncountable cardinal κ, if there is a simple Pλ-point ultra
filter over κ, then cf(jU (κ)) = λ for every uniform ultrafilter on κ.

2.1. π-characters, splitting, and reaping numbers

Let us consider a well-known weakening of the characteristics from the previous sec
tion. We say that ℬ is a π-base for a uniform ultrafilter U on κ if ℬ ⊆ [κ]κ and for every 
A ∈ U , there is B ∈ ℬ such that B ⊆∗ A.

π𝔠𝔥(U) = min{|ℬ| | ℬ is a π-base for U}

π𝔲κ = min{π𝔠𝔥(U) | U is a uniform ultrafilter over κ}

π𝔲comκ = min{π𝔠𝔥(U) | U is a κ-complete ultrafilter over κ}

Clearly, the above characteristics are all less than or equal to their respective π-free 
versions. The π-depth spectrum is the set Spπ dp(U) of regular cardinals λ for which 
there exists a ⊆∗-decreasing sequence ⟨Xi | i < λ⟩ ⊆ U that is unbounded in ([κ]κ,⊇∗). 
From this we can define the π-analog of 𝔱:

π𝔱(U) = min Spπ dp(U)

Definition 2.13. U is a πPλ-point if every 𝒜 ⊆ U of cardinality less than λ has a pseudo
intersection. Namely there is B ∈ [κ]κ such that B ⊆∗ A for all A ∈ 𝒜.

Once again, we note that we may restrict our attention to πPλ-points where λ is 
regular and that such a lambda must be of cofinality at least κ+.

π𝔭(U) = min{λ | U is not a πPλ+-point}
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Remark 2.14. 

(1) Spπ dp(U) ⊆ Spdp(U).
(2) 𝔱(U) ≤ π𝔭(U) ≤ π𝔱(U) ≤ π𝔠𝔥(U) ≤ 𝔠𝔥(U). The inequalities π𝔭(U) ≤ π𝔱(U) and 

π𝔠𝔥(U) ≤ 𝔠𝔥(U) are immediate from the definitions. To see π𝔱(U) ≤ π𝔠𝔥(U) suppose 
towards a contradiction that π𝔱(U) = λ1 > π𝔠𝔥(U) = λ0, let ⟨Xi | i < λ1⟩ ⊆ U be 
⊆∗-decreasing witnessing λ1 ∈ Spπ dp(U), and let ⟨bα | α < λ0⟩ be a π-base for U . For 
each Xi, there is some αi < λ0 such that bαi

⊆∗ Xi. There are unboundedly many 
i’s such that αi = α∗ and therefore bα∗ would be a lower bound for ⟨Xi | i < λ1⟩ in 
([κ]κ,⊆∗), contradiction.
For 𝔱(U) ≤ π𝔭(U), recall that 𝔱(U) = 𝔭(U) and if U is not a πPλ+-point then U is 
also not a πPλ+-point.

Question 2.15. Is π𝔱(U) = π𝔭(U)?

Remark 2.16. One can define the above π-characteristics for filters. For the club filter 
however, we have that π𝔠𝔥(Cubκ) = 𝔠𝔥(Cubκ), π𝔱(Cubκ) = 𝔱(Cubκ), and π𝔭(Cubκ) =
𝔭(Cubκ).

We say that f : κ → κ is almost one-to-one modulo an ultrafilter U if there is X ∈ U

such that f ↾ X is bounded-to-one, namely, for every γ < κ, π−1[{γ}]∩X is bounded in 
κ. The following is a generalization of the well known Rudin-Blass ordering of ultrafilters 
on ω:

Definition 2.17. Let U,W be ultrafilters over κ. We say that an ultrafilter U is Rudin
Blass below W , and denote it by U ≤RB W if there is an almost one-to-one mod W
function f : κ → κ such that f∗(W ) = U .

Theorem 2.18 (Kanamori, Ketonen). Let U be a countably complete uniform ultrafilter 
over a regular cardinal κ. Then U is RB-above an ultrafilter which extends the club filter.

Proof. First, we claim that if W is an uniform ultrafilter on a regular uncountable 
cardinal κ such that no function that is almost one-to-one modulo W is regressive on a 
set in W , then W extends the club filter. To see this, note that any nonstationary set 
A ⊆ κ supports a monotone regressive function g : A → κ. (Namely, let C ⊆ κ \ A be 
club, and let g(α) = sup(C∩α) for α ∈ A.) Therefore W cannot contain a nonstationary 
set, and hence W extends the club filter.

To prove the theorem, let f : κ → κ be the <U -least function that is almost one-to-one 
modulo U , and let W = f∗(U). Note that W ≤RB U is a uniform ultrafilter on κ such 
that no function that is almost one-to-one modulo W is regressive on a set in W , and 
hence W extends the club filter. □
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Remark 2.19. The assumption of countable completeness in the previous theorem can be 
improved to the assumption that there is a least almost one-to-one function modulo U . 
Also, the argument adapts to countably complete M -ultrafilters where M is a transitive 
model of ZFC−.

Theorem 2.20. If U ≤RB W then π𝔱(W ) ≤ π𝔱(U) and π𝔠𝔥(U) ≤ π𝔠𝔥(W ).

Proof. Let g : κ → κ be such that g∗(W ) = U and let X ∈ W be such that g ↾ X is 
almost one-to-one. Let ⟨Xi | i < λ⟩ be a π-base for W . By shrinking the sequence to 
another π-base, we may assume that for every i < λ, Xi ⊆∗ X. This means that g[Xi]
must be unbounded in κ. It is clear now that ⟨g[Xi] | i < λ⟩ is a π-base for U . For the 
other inequality, let ⟨Yi | i < λ⟩ ⊆ U be ⊆∗-decreasing with no pseudo-intersection. Then 
⟨g−1[Yi] | i < λ⟩ must also be ⊆∗-decreasing. If the sequence had a pseudo-intersection 
Y , then g[Y ] would have been a pseudo-intersection of the Yi’s. Note that if we start 
with a sequence ⟨Zi | i < λ⟩ ⊆ W with no pseudo-intersection, then g[Zi] is indeed 
⊆∗-decreasing, but this sequence might have a pseudo-intersection. □
Theorem 2.21. For any countably complete uniform ultrafilter U on κ, π𝔠𝔥(U) ≥ 𝔡κ and 
π𝔱(U) ≤ 𝔟κ.

Proof. By Theorem 2.18, we can find U∗ ≤RB U such that U∗ extends the club filter. 
By Theorem 2.20 it sufficed to prove the inequalities for U∗. The argument for U∗ is a 
straightforward generalization of Proposition 2.6. □

The countably completeness assumption will be removed using Lemma 2.22 and The
orem 2.23.

Let us introduce the splitting and reaping numbers. We say that A splits B if A ∩B

and B \ A are unbounded in κ. We say that 𝒜 is a splitting family if every X ∈ [κ]κ is 
splittable by some A ∈ 𝒜. We say that 𝒜 ⊆ [κ]κ is unsplittable, if there is no A ∈ [κ]κ
that splits every A ∈ 𝒜.

(1) 𝔰κ = min{|𝒜| | 𝒜 is a splitting family}.
(2) 𝔯κ = min{|𝒜| | 𝒜 is a unsplittable family}.

Evidently, 𝒜 is unsplittable if for example, 𝒜 is a π-base of a uniform ultrafilter. Hence 
𝔯κ ≤ π𝔠𝔥(U). In fact B. Balcar and P. Simon proved that 𝔯κ is always realized by a 
π-base of a uniform ultrafilter [2].

Lemma 2.22. Let U be a uniform ultrafilter over κ.

(1) π𝔠𝔥(U) ≥ 𝔯κ.
(2) π𝔭(U) ≤ 𝔰κ
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Proof. (1) is trivial as we observed above. For (2), let ⟨Sj | j < 𝔰κ⟩ be a splitting family. 
For every j, either Sj or κ \ Sj is in U . If 𝔰κ < π𝔭(U), then these sets would have a 
pseudo-intersection which couldn’t be split by any of the Sj ’s. This is a contradiction. □
Theorem 2.23 (Raghavan-Shelah [30]). Let κ be an inaccessible cardinal, then:

(1) 𝔡κ ≤ 𝔯κ

(2) 𝔰κ ≤ 𝔟κ.

The following is a generalization of a simple Pλ-point.

Definition 2.24. We say that an ultrafilter U is a simple πPλ-point if π𝔭(U) = λ = π𝔠𝔥(U)

Since 𝔱(U) ≤ π𝔭(U) ≤ π𝔠𝔥(U) ≤ 𝔠𝔥(U), a simple Pλ-point is a simple πPλ-point.

Corollary 2.25. If there is a uniform simple πPλ-point on κ then λ = π𝔲κ = 𝔡κ = 𝔟κ =
𝔰κ = 𝔯κ.

Proof. This follows from Theorem 2.21, Lemma 2.22, Theorem 2.23. □
Question 2.26. What about 𝔞κ, 𝔦κ, 𝔭κ, 𝔱κ? Are they determined in the presence of a simple 
Pλ-point?

2.2. Another look at the extender-based model

In [4], Ben-Neria and Gitik used the Merimovich extender-based Magidor-Radin forc
ing from [26] in order to prove that it is consistent that the splitting number at a regular 
uncountable cardinal κ is a regular cardinal λ > κ+ from the existence of a measurable 
κ with o(κ) = λ.

The following summarizes the relevant properties of a generic extension M = V [G]
via the extender based Magidor-Radin forcing: κ < λ are regular uncountable cardinals 
of M and there are intermediate models ⟨Mi | i < λ⟩ of ZFC and sequences ⟨𝒰i | i < λ⟩
and ⟨ki | i < λ⟩ in M such that:

(1) If i < j then Mi ⊆ Mj .
(2) 𝒰i ∈ Mi and Mi |= 𝒰i is a normal ultrafilter.
(3) ki ∈ [κ]κ diagonalizes 𝒰i (i.e. ki ⊆∗ X for every X ∈ 𝒰i). Also kj ∈ Mi for all j < i.
(4) P (κ)M =

⋃︁
i<λ P (κ)Mi .

In [5], these properties were used to prove that in V [G], the club filter is a simple Pλ
point. Combining this with 2.9:

Corollary 2.27. If (1) through (4) hold, then M |= 𝔟κ = 𝔡κ = λ.
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Let us show how to deduce that the splitting number is large:

Proposition 2.28. If (1) through (4) hold, then M |= 𝔰κ = λ.

Proof. Since 𝔰κ ≤ 𝔡κ, it suffices to prove that λ ≤ 𝔰κ. Suppose that 𝒮 ∈ M is a collection 
of subsets of κ of size less than λ. By items (1) and (4), there is some i < λ such that 
𝒮 ⊆ P (κ)Mi . By (2), for each X ∈ 𝒮, either X ∈ 𝒰i or κ\X ∈ Ui. By (3), ki diagonalizes 
𝒰i, and therefore, for each X ∈ 𝒮, either ki ⊆∗ X or ki ⊆∗ κ \X. So ki is not split by 
any member of 𝒮. □

The conditions (1) through (4) also determine the value of the reaping number:

Proposition 2.29. If (1) through (4) hold, then M |= 𝔯κ = cf(λ).

Proof. Again, since 𝔟κ ≤ 𝔯κ, it suffices to prove that 𝔯κ ≤ cf(λ). Let {αi | i < cf(λ)} ∈ M

be cofinal in λ. We claim that {kαi
| i < cf(λ)} is a reaping family. To see this, let X ∈ M

be any subset of κ. By (4) there is i such that X ∈ Mi. Let i0 < λ such that i ≤ αi0 . 
By (1), X ∈ Mαi0

and by (2), either X ∈ 𝒰αi0
or κ \ X ∈ 𝒰αi0

. By (3), kαi0
⊆∗ X or 

kαi0
⊆∗ κ \X, as desired. □

Corollary 2.30. In the models of [4], 𝔟κ = 𝔡κ = 𝔯κ = 𝔰κ = κ++ = 2κ.

Corollary 2.31. In the models of [3], 𝔟κ = 𝔡κ = 𝔯κ = 𝔰κ = κ+ < 2κ.

This reduces the upper bound on the consistency results obtained by Brooke-Taylor--
Fischer--Friedman--Montoya [13] from a supercompact cardinal to the low levels of strong 
cardinals.

To obtain the configuration of the reaping number above, Ben-Neria and Garti [3] 
prove that some of the ultrafilters 𝒰i cohere, that is:

(5) There is an unbounded S ⊆ λ such that for every i < j in S, 𝒰i ⊆ 𝒰j .

They used (5), for example, to deduce that κ is measurable in M . In fact, the ultrafilter 
they produce is a κ-complete simple πPλ-point:

Theorem 2.32. Assume that ⟨𝒰i, | i < λ⟩, ⟨ki | i < λ⟩ ∈ M and (1) through (5) hold. 
Then in M there is a normal ultrafilter 𝒰 which is a simple πPλ-point. In particular, 
π𝔲comκ = λ.

Proof. Consider the ultrafilter 𝒰 =
⋃︁

i∈S 𝒰i. It is easy to see that π𝔠𝔥(𝒰) ≤ λ. We claim 
that λ ≤ π𝔭(U), which finishes the proof. Suppose that ⟨Xi | i < ρ⟩ ⊆ U , for some ρ < λ. 
Then, similar arguments show that there is j < λ such that kj is a pseudo-intersection 
for the sequence ⟨Xi | i < ρ⟩. □
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It is an open problem whether one can obtain 𝔲κ = κ+ < 2κ at an inaccessible 
cardinal κ from much less than a supercompact cardinal. The previous theorem shows 
that current techniques suffice to obtain the analogous result for π𝔲κ from hypotheses 
at the level of strong cardinals.

In fact, to obtain a model M satisfying (1) through (5), the authors of [3] used a 
measurable cardinal κ such that o(κ) is a weakly compact cardinal above κ. However, if 
we only wish to keep κ measurable and play with the values of 𝔯κ and 𝔰κ, we only need to 
secure (1) through (4), and therefore we can get away with much less; for example, o(κ) =
κ+4 suffices. (This uses [26, Claim 5.9] to ensure the preservation of measurability.)

Question 2.33. Can one determine the values of other generalized cardinal characteristics 
at κ in the extender-based Magidor-Radin model?

3. Lower bounds

3.1. The strength of a Pλ-point

Gitik showed that if there is Pκ++-point then there is an inner model with a μ
measurable. The argument can be found in [5]. In terms of consistency strength, this is 
already above o(κ) = κ++. Here we improve his result a bit.

Lemma 3.1. Suppose j : V → M is an elementary embedding with critical point κ and 
α < ((2κ)+)M . Let D be the ultrafilter on κ derived from j using α and k : MD → M be 
the canonical factor embedding. Then crit(k) > α.

Proof. Let f ∈ ran(k) be a surjection from P (κ) onto α + 1, which exists since k[MD]
is an elementary substructure of M and {κ, α} ∈ k[MD]. Since P (κ) ⊆ MD, we have 
P (κ) ⊆ ran(k). Hence α + 1 = f [P (κ)] ⊆ ran(k). □
Theorem 3.2. If there is a Pκ++-point U , then there is an inner model with a 2-strong 
cardinal.

Proof. Assume towards a contradiction that there is no inner model with a 2-strong 
cardinal. Let E0 be the first extender used in the unique normal iteration i : K → jU (K). 
Note that this iteration exists and i = jU ↾ K by Schindler’s theorem [31, Corollary 3.1]. 
(In fact, for core models at the level of strong cardinals, the theorem is due to Steel [32, 
Theorem 8.13].) Then jU ↾ K = k ◦ iE0 , where k is the embedding given by the tail of 
the iteration and the critical point of k is some ME0 -measurable cardinal greater than κ
(and so above (κ++)ME0 ). Let γ be the supremum of the generators7 of E0. Note that 
γ ≤ (κ++)ME0 since otherwise, by coherence and the initial segment condition on the 

7 A generator of E0 is an ordinal δ such that for every α < δ and every f : κ → κ, jU (f)(α) ̸= δ.
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extender sequence of the core model, E0 ↾ (κ++)ME0 ∈ ME0 and witnesses that κ is 
2-strong in ME0 , contradicting the anti-large cardinal assumption of the theorem. Also 
(κ++)ME0 < (κ++)K , since otherwise E0 witnesses that κ is a 2-strong cardinal in K.

For each α < γ, the measure E0(α) is a subset of Uα, where Uα is the V -ultrafilter 
derived from jU and k(α). In particular, Uα ≤RK U via some function fα : κ → κ. Since 
2κ = κ+ in K and since U is a Pκ++-point, there is a set Bα ∈ U such that fα[Bα] ⊆∗ X

for all X ∈ E0(α): let Bα ∈ U be a ⊆∗-lower bound of {f−1
α [X] : X ∈ E0(α)}. Since 

γ < κ++ and again since U is a Pκ++-point, we can find a single B ∈ U such that 
B ⊆∗ Bα for all α < γ. Note also that E0(α) = {X ∈ PK(κ) | fα[Bα] ⊆∗ X}. Since 
jU ↾ K is an iteration of K with critical point κ, PK(κ) = P (K)MU (κ). Using the fact 
that fα[Bα] ∈ MU we have that E0(α) ∈ MU .

Let U ′ be the filter on κ that is ⊆∗-generated by B. Then U ′ ∈ MU . Let us claim that 
E0 can be reconstructed in MU from U ′, which will lead to a contradiction (since it will 
imply that E0 ∈ ME0).

Claim 3.3. For each α < γ, E0 ↾ α ∈ MU

Proof. As we already noticed, E0(α) ∈ MU . By Lemma 3.1, applied to j = jE0 , we 
conclude that E0 ↾ α is the extender of length α derived from jE0(α) ↾ PK(κ), which 
belongs to MU . □
Claim 3.4. E0 ∈ MU .

Proof. We will prove that there is a formula φ(x0, x1, x2, x3) in the language of set theory 
such that for any α < γ, E0 ↾ α the unique F ∈ MU such that MU ⊨ φ(F, fκ, U ′, α). 
Then {E0 ↾ α : α < γ} ∈ MU , which proves the claim.

To be precise, φ(F, fκ, U ′, α) states that F is a K-extender of length α, (2κ)+KF ≥ α, 
and there is a family of functions ⟨ga : a ∈ [α]<ω⟩ such that:

(1) Each Fa ⊆ (ga)∗(U ′).
(2) For each a ⊆ b, πa,b ◦ gb = ga mod U ′, where πa,b is the usual map from κ|b| onto 

κ|a|.
(3) gκ = fκ.

By condition (1), (ga)∗(U ′) ∩ K = Fa. Since U ′ ⊆ U , this ensures that the maps ka :
KFa

→ KMU defined by ka([h]Fa
) = [h ◦ ga]U are well-defined and jU ↾ K = ka ◦ jFa

. 
Condition (2) ensures that whenever a ⊆ b, ka = kb ◦ ka,b, where ka,b : KFa

→ KFb
is 

the usual factor map defined by ka,b([h]Fa
) = [h ◦ πb,a]Fb

. Indeed,

ka([h]Fa
) = [h ◦ ga]U = [h ◦ πa,b ◦ gb]U = kb([h ◦ πa,b]Fb

) = kb(ka,b([h]Fa
).

By the universal property of direct limits, the extender embedding jF : K → KF factors 
into jU ↾ K; i.e., jU ↾ K = k ◦ jF , where k is the direct limit embedding of the ka’s.
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Clearly, E0 ↾ α satisfies the above. For uniqueness, if F satisfies the above then by 
requirement (3) that fκ = gκ, we have F (κ) = E0(κ) and k(κ) = κ. We claim that the 
critical point of k is at least (2κ)+KF . To see this we simply note that

P (κ) ∩KF = P (κ) ∩K = P (κ) ∩ jU (K)

and since crit(k) > κ, for every X ⊆ κ, k(X) = X. It follows that for every Y ⊆ P (κ), 
Y ∈ KF , k(Y ) = Y . It follows that every ordinal β < (2κ)+KF , k(β) = β.

Finally note that (2κ)+KF = crit(k) ≥ α. Hence for every a ∈ [α]<ω, F (a) is the 
ultrafilter derived from jU and a, so F (a) = E0(a), and hence F = E0 ↾ α. □

Working in MU , we appeal to the maximality of K [32, Thm. 8.6]. Since E0 ∈ MU

and E0 coheres the extender sequence of KMU , E0 ∈ KMU . But E0 is the first extender 
applied in the normal iteration leading to KMU , so this is a contradiction. □
3.2. Preserving measurability with Mathias forcing

Theorem 3.5. Suppose κ is measurable, the core model K exists, and U ∈ K is a normal 
measure on κ. Assume that there is a pseudo-intersection A of U such that A ∩ Lim(A)
is unbounded. Then in K, κ carries a μ-measure.

Proof. Let W ∈ V be a κ-complete ultrafilter over κ.

Claim 3.6. Let α ∈ jW (A) \ κ and let Wα be the V -ultrafilter derived from jW and α, 
then Wα ∩K = U .

Proof. It suffices to prove that U ⊆ Wα. For any X ∈ U , by assumption there is ξ < κ

such that A \ ξ ⊆ X. Hence jW (A) \ ξ ⊆ jW (X). Since α ∈ jW (A) \ κ, it follows that 
α ∈ jW (X) and thus X ∈ Wα. □

By Schindler [31] (and Steel) again, jW ↾ K is an iteration of K by its measures/exten
ders. Let ⟨Kα, Eα, iα,β : α < β ≤ θ⟩ be the normal iteration of K such that i0,θ = jW ↾ K; 
thus Eα is the extender used at stage α and iα,β : Kα → Kβ is the canonical embedding.

Claim 3.7. Let α ∈ jW (A) \ κ.

(1) α is an image of κ under the iteration. Namely, α = i0,γ(κ) for some γ < θ.
(2) Suppose that γ′ ≥ γ is the first stage of the iteration where we apply an extender 

Eγ′ with critical point at least α. Then Eγ′(α) = i0,γ′(U).

Proof. For (1), first note that α is a sky point; namely, that for every club C ∈ K on κ, 
α ∈ jW (C). This is true since U is a normal measure. Now it is not hard to see that for 
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any ρ < θ, and every i0,ρ(κ) < ν < i0,ρ+1(κ), there is a function f : κ → κ in K such 
that ν ≤ iρ+1(f)(i0,ρ(κ)). Hence α must be of the form i0,γ(κ) for some γ < θ.

For (2), we first note that i0,γ′ [U ]∪Fα ⊆ Eγ′(α), where Fα is the tail filter on α. To see 
this, let X ∈ U , then α ∈ jW (X) hence α ∈ iγ′+1,θ(iγ′,γ′+1(i0,γ′(X))). By the normality 
of the iteration, α ∈ iγ′,γ′+1(i0,γ′(X)) which implies that i0,γ′(X) ∈ Eγ′(α). To see that 
i0,γ′(U) = Eγ′(α) it suffices to prove that i0,γ′ [U ] ∪ Fα generates i0,γ′(U). This follows 
from the normality of U and since every set in i0,γ′(U), is of the form i0,γ′(f)(ξ⃗) for some 
f : [κ]ξ⃗ → U , f ∈ K and ξ⃗ ∈ [α]<ω. (See [7, Lemma 3.11].) □

Now we are ready to prove that κ carries a μ-measure in K. Suppose not, towards a 
contradiction. Pick any point α∗ ∈ jW (A) ∩ Lim(jW (A)) above κ. Then by the claim, 
fix ν < θ such that α = i0,ν(κ) and stages {νi | i ≤ η} of the iteration such that 
ν = νη = supi<η νi, and for each i ≤ η, at stage νi of the iteration, we apply an extender 
Eνi

whose derived normal measure is i0,νi
(U).

Since κ is not μ-measurable in K, i0,νi
(κ) is not μ-measurable in Kνi

, and so the 
extender Eνi

is actually equivalent to its derived normal measure i0,νi
(U); otherwise, by 

the initial segment condition, the derived normal measure would belong to Ult(Kνi
, Eνi

), 
which implies Eνi

is a μ-measure.
Now the measure i0,νη

(U) is definable in MW as the set of all X ⊆ α∗ that contain 
a tail of jW (A) ∩ α∗. Applying the maximality of the core model (for example, [32, 
Theorem 8.14 (2)]) in MW , i0,νη

(U) ∈ KMW . Since the iteration is normal, we con
clude that i0,νη

(U) ∈ i0,νη+1(K), which is itself the ultrapower of i0,νη
(K) by i0,νη

(U). 
Contradiction. □
Remark 3.8. Note that the assumption that A contains unboundedly many closure points 
is essential. Indeed, after Radin forcing with a repeat point, κ stays measurable and there 
is a ground model normal measure which is diagonalized by the successor points of the 
Radin club.

Let us use Theorem 3.5 to provide a lower bound on the preservation of measurability 
after the generalized Mathias forcing. This is related to the attempt to obtain a small 
ultrafilter number at a measurable cardinal using this method.

Definition 3.9. Suppose κ<κ = κ. Given a κ-complete filter F over a measurable cardinal 
κ ≥ ω, let MF be the forcing notion whose conditions are pairs (a,A) ∈ [κ]<κ × F . The 
order is defined by (a,A) ≤ (b,B) if b ⊆ a, A ⊆ B, and a \ b ⊆ B.

This forcing is κ-closed and κ-centered. This is an unorthodox definition, but it is 
forcing equivalent to the standard one where in the definition of (a,A) ≤ (b,B) we 
replace b ⊆ a with b ⊑ a. Indeed, consider the set of conditions M∗

U = {(a,A) | min(A) >
sup(a)}. Clearly M∗

U is dense in MU and if (a,A) ≤ (b,B) ∈ M∗
U , then min(a \ b) >

sup(b), hence b ⊑ a. The reason for presenting the forcing this way is the following simple 
lemma:
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Lemma 3.10. If U ≤RK W then MW projects onto MU .

Proof. Let f : κ → κ witness that U ≤RK W , we may assume that f is onto. Define 
ϕ : MW → MU by ϕ((a,A)) = (f ′′a, f ′′A) and we claim that ϕ is a projection. If 
(a,A) ≤ (b,B), then f ′′b ⊆ f ′′a and f ′′A ⊆ f ′′B. Also if ν ∈ f ′′a \ f ′′b, the ν = f(x)
for some x ∈ a \ b ⊆ B, hence ν = f(x) ∈ f ′′B. So (f ′′a, f ′′A) ≤ (f ′′b, f ′′B). Suppose 
that (x,X) ≤ (f ′′a, f ′′A). This means that x \ f ′′a ⊆ f ′′A. Hence there is a′ ⊆ A

such that f ′′[a ∪ a′] = x. Also since X ∈ U , f−1[X] ∈ W . Consider the condition 
p = (a∪a′, A∩f−1[X]). Then p ≤ (a,A) and ϕ(p) ≤ (x,X). Hence ϕ is a projection. □
Proposition 3.11. Suppose G ⊆ MU is V -generic and

AG =
⋃︂

{a | ∃A, (a,A) ∈ G}.

(1) For every A ∈ U , AG ⊆∗ A.
(2) If Cubκ ⊆ U , then AG ∩ Lim(AG) is unbounded in κ.

Proof. The first item is clear, since every condition (x,X) can be extended to a condition 
(x,X ∩A) which forces that ȦG \ x̌ ⊆ Ǎ. For the second item, let (x,X) be an condition, 
and δ < κ, we will find a stronger condition which forces some continuity into AG. 
Consider Lim(X) ∈ Cubκ. Then X ∩ Lim(X) \ sup(x) ∈ U . Let α > δ be any point in 
X ∩ Lim(X), then (x ∪X ∩ α + 1, X \ α + 1) forces that α is a continuity point of ȦG

above δ. □
Corollary 3.12. Suppose that V [G] is a generic extension where κ is measurable, and 
there is A ∈ V [G], a V -generic set for MU , where U is a κ-complete ultrafilter in V . 
Then there is an inner model with a μ-measurable cardinal.

Proof. By Lemma 3.10, we may assume that A is V -generic for MU for a normal ultra
filter U in V . By Proposition 3.11, A diagonalizes the K-normal measure U ∩K and has 
unboundedly many continuity points. Hence we may apply Theorem 3.5. □
3.3. The generalized tower number

Our first application is to give a non-trivial lower bound on the statement ``κ is 
measurable and 𝔱κ > κ+''.

Definition 3.13. A family 𝒜 ⊆ [κ]κ has the κ-SIP (strong intersection property) if for 
every ℬ ∈ [𝒜]<κ, 

⋂︁
ℬ has size κ. A pseudo-intersection for 𝒜 is a set X ∈ [κ]κ such 

that for every A ∈ 𝒜, X ⊆∗ A. A tower in κ is a sequence 𝒜 = ⟨Ai | i < λ⟩ ⊆ [κ]κ
such that if i < j then Ai ⊇∗ Aj and 𝒜 has no pseudo-intersection. The generalized 
pseudo-intersection and tower numbers are defined as follows:
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(1) 𝔭κ is the minimum cardinality of a set 𝒜 ⊆ [κ]κ that has the κ-SIP but has no 
pseudo-intersection.

(2) 𝔱κ is the minimum length of a tower in κ.

It is known that κ+ ≤ 𝔭κ ≤ 𝔱κ ≤ 𝔟κ (see [13, Lemma 31]). Note that starting with an 
indestructible supercompact cardinal κ and an appropriate bookkeeping argument, one 
can iterate Mathias forcing of length κ++ with <κ-support to add a diagonalizing set 
to any κ-complete uniform filter on κ which is generated by κ+-many sets. This forcing 
preserves the supercompactness of κ and makes 𝔭κ = 𝔱κ = κ++. In the other direction, 
if one wishes to obtain 𝔱κ ≥ κ++ at a measurable cardinal κ, one must violate GCH at 
a measurable, which already implies an inner model where o(κ) = κ++. Let us improve 
this lower bound:

Theorem 3.14. Suppose κ is measurable and that 𝔱κ > κ+. Then there is an inner model 
with a μ-measurable cardinal.

Proof. We first sketch a proof that the existence of a πPκ++-point implies an inner model 
with a μ-measurable. In Gitik’s argument to obtain a μ-measurable from a Pκ++-point U
(which appears in [5]), we needed to reconstruct U ∩K in the ultrapower MU , and this 
was done by finding a set A ∈ U such that A ⊆∗ X for all X ∈ U ∩K. The purpose of the 
set A is to define a filter F ∈ MU which includes U ∩K. It follows that the assumption 
of A being a member of U can be replaced with A being unbounded in κ. Therefore the 
argument works assuming that U is a πPκ++-point (Definition 2.13). From this point on, 
the argument is identical to Gitik’s.

To conclude the theorem, we claim that if 𝔱κ > κ+ and U is normal, then U is a πPκ++
point. Otherwise, let ⟨Xi | i < κ+⟩ ⊆ U be a counterexample. Since U is normal, we can 
find a ⊆∗-decreasing sequence ⟨Yi | i < κ+⟩ ⊆ U such that for each i < κ+, Yi ⊆∗ Xi. 
The sequence of Yi’s has no pseudo-intersection, since any such pseudo-intersection would 
have also been one for the sequence ⟨Xi | i < κ+⟩. Hence we see that ⟨Yi | i < κ+⟩ is a 
tower, contradicting 𝔱κ > κ+. □

This is related to a question of Gitik and Ben-Neria [4, Question 3.2] which asked a 
similar question regarding the splitting number.

3.4. Filter games without GCH

The filter games of Holy-Schlicht, Nielsen-Welch and Foreman-Magidor-Zeman revolve 
around several filter games defined as follows:

Fix θ a regular large enough cardinal. A transitive set M is called a κ-suitable model 
if M ⊆ H(κ+) satisfies ZFC− and is closed under <κ-sequences.

The notion of a constraint function defined below is essentially a notational tool to 
allow us to define several families of filter games all at once.
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Definition 3.15. A constraint function is a function 𝒞 that assigns to each κ-suitable 
model M a set 𝒞(M) of κ-complete uniform filters on κ such that for each F ∈ 𝒞(M), 
F ∩M is an M -ultrafilter.

We will consider the following constraint functions:

(1) Set(M) is the collection of all filters F such that F ∩M is a κ-complete M -ultrafilter 
and F is ⊆∗-generated by a single set.

(2) NSet(M) is the collection of all filters F such that F ∩M is an M -normal ultrafilter 
and F is ⊆∗-generated by a single set.

(3) Filter(M) is the collection of all filters F such that F ∩ M is a κ-complete M
ultrafilter.

Definition 3.16 (The filter game). Let κ be a regular cardinal and let 𝒞 be a constraint 
function. The filter game G𝒞(κ, γ) is the two-player game of length γ defined as follows:

At stage i of the game, Player I plays first a κ-suitable model Mi of size at most 
κ · |i|, such that 

⋃︁
j<i Mj ⊆ Mi. Then Player II responds with a filter Fi ∈ 𝒞(Mi) which 

extends 
⋃︁

j<i Fj .
The game is played for every stage i < γ. Player I wins if and only if at some stage 

i < γ, Player II has no legal move.

Recall the following observation of Holy-Schlicht [22, Observation 3.5]:

Proposition 3.17. Suppose that 2κ = κ+. The following are equivalent:

(1) Player II has a winning strategy in the game GNSet(κ, κ+).
(2) Player II has a winning strategy in the game GSet(κ, κ+).
(3) Player II has a winning strategy in the game GFilter(κ, κ+).
(4) κ is measurable.

This proposition shows that assuming GCH, the filter games of length κ+ associated 
to any of the various constraint functions above are equivalent. If 2κ > κ+, this is no 
longer obvious, and moreover, it makes sense to consider G𝒞(κ, γ) for γ > κ+.

We first show that the games of length κ+ are still equivalent in this context:

Proposition 3.18. The following are equivalent:

(1) Player II has a winning strategy in the game GNSet(κ, κ+).
(2) Player II has a winning strategy in the game GSet(κ, κ+).
(3) Player II has a winning strategy in the game GFilter(κ, κ+).
(4) κ is measurable in V [G] where G ⊆ Add(κ+, 1) is V -generic.
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Proof. (1) implies (2) and (2) implies (3) are trivial. So let us begin by showing that (3) 
implies (4). We note that in V [G], we have that 2κ = κ+ regardless of the cardinal arith
metic of the ground model. By the κ+-closure of the forcing, every winning strategy for 
Player II in the game GFilter(κ, κ+) in V remains a winning strategy in V [G]. Therefore 
by Proposition 3.17, κ is measurable in V [G].

Finally, we show that (4) implies (1). Suppose that in V [G], κ is measurable and 
let U be a normal ultrafilter on κ. Let U̇ be a name such that U̇G = U . Consider the 
strategy for Player II in GNSet(κ, κ+) defined as follows. At stage i < κ+, we will have 
defined a decreasing sequence (pj)j<i ⊆ Add(κ+, 1). We choose a lower bound pi of these 
conditions, forcing U̇∩Mi = Ď, and then Player II plays the filter Ui that is ⊆∗-generated 
by the diagonal intersection of D. □
Definition 3.19. A κ-suitable model M ⊆ H(κ+) is internally approachable by a sequence 
⟨Nα : α < κ+⟩ of κ-suitable models if M =

⋃︁
α<κ+ Nα and for all β < κ+, ⟨Nα : α <

β⟩ ∈ Nβ .

Definition 3.20. If M is a transitive set and X ∈ M is a set, an M -ultrafilter U on X is 
κ-amenable if for any 𝒜 ⊆ PM (X) with 𝒜 ∈ M and |𝒜|M ≤ κ, U ∩ 𝒜 ∈ M .

Theorem 3.21. Player I does not have a winning strategy in the game GFilter(κ, κ+) if 
and only if there are stationarily many internally approachable, κ-suitable models M ⊆
H(κ+) such that there is a κ-amenable, κ-complete M -ultrafilter on κ.

Proof. Suppose Player I has a winning strategy τ for GFilter(κ, κ+). Then there are club 
many M ⪯ (H(κ+), τ). We claim that for any such M , if M is internally approachable 
by a sequence ⟨Nα | α < κ+⟩, then there is no κ-complete, κ-amenable M -ultrafilter. 
Otherwise, let U be such an M -ultrafilter, and we will use U to produce a run r which 
is played according to τ but is a win for Player II. (This just means that the run r has 
length κ+ and Player II follows the rules of the game.)

At move α < κ+, let Player I play N = τ(r ↾ α), and let Player II respond with 
U ∩N . In order for this to be a valid move for II, U ∩N has to measure all sets in N , 
and for this, it is essential that N ⊆ M (since U is just an M -ultrafilter). In fact, we will 
show that the model N is an element of M . We do this by proving by induction that 
each proper initial segment of the run r is an element of M . Since M ⪯ (H(κ+), τ), it 
will follow that N = τ(r ↾ α) ∈ M .

Suppose that α < κ+ and suppose that r ↾ β ∈ M for all β < α. Let γ < κ+ be large 
enough so that r ↾ β ∈ Nγ for all β < α. Now r ↾ α is definable in (H(κ+), τ) from the 
parameter U ∩ Nγ . Since U ∩ Nγ is a member of M by κ-amenability and since M is 
elementary in (H(κ+), τ), r ↾ α ∈ M .

In the other direction, suppose that Player I does not have a winning strategy, and 
let F : [H(κ+)]<ω → H(κ+) be any function. We will find an internally approachable 
model M ⊆ H(κ+) that is closed under F and a κ-amenable, κ-complete M -ultrafilter. 
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To do this, we will define a strategy for Player I, and then obtain a losing run played 
according to this strategy that will produce the desired M .

Let r be a run in the game of length α < κ+, and we will define σ(r). Assume by 
recursion have already defined σ(r ↾ β) for every β < α. Let σ(r) be an elementary 
submodel of (H(κ+), F ) of size κ such that

{r, ⟨σ(r ↾ β) | β < α⟩} ∪ α ⊆ σ(r)

By our assumption, there is a winning run r for Player II in which Player I plays 
according to σ. Let Nα = σ(r ↾ α) and M =

⋃︁
α<κ+ Nα. It is clear that the union of the 

ultrafilters played by Player II is a κ-amenable, κ-complete M -ultrafilter. □
Question 3.22. [22, Observation 3.5] shows that if κ is inaccessible and 2κ = κ+, then 
GFilter(κ, κ+) is determined. If 2κ > κ+, can the game fail to be determined?

Equivalently, suppose that there are stationarily many internally approachable, κ
suitable models M ⊆ H(κ+) such that there is a κ-amenable, κ-complete M -ultrafilter 
on κ. Must κ be measurable in V Add(κ+,1)?

Moving past κ+, we first note that:

Remark 3.23. The following are equiconsistent:

(1) o(κ) = κ++

(2) 2κ > κ+ and Player II has a winning strategy in the game GFilter(κ, 2κ).

Proof. The equivalence follows from Gitik and Woodin’s computation of the consistency 
strength of the failure of GCH at a measurable cardinal [20], once we observe that (2) 
is equivalent to κ being measurable with 2κ > κ+. Indeed, if κ is measurable, fix a κ
complete ultrafilter U over κ. Then a winning strategy for Player II is game GFilter(κ, 2κ)
is given by responding U ∩M , whenever Player one plays a κ-suitable model M . In the 
other direction, let σ be a winning strategy for Player II in the game GFilter(κ, 2κ). 
Let ⟨Mα | α < 2κ⟩ be an increasing sequence of κ-suitable models such that P (κ) ⊆⋃︁

α<2κ Mα such that |Mα| ≤ |α|. Let ⟨Uα | α < 2κ⟩ be the Mα-ultrafilters produced 
by simulating a winning run using σ and having Player I playing the models Mα. Let 
U =

⋃︁
α<2κ Uα. It is routine to verify that U is a κ-complete ultrafilter over κ. □

Given this remark and Theorem 3.2, the following proposition shows that a winning 
strategy in the set game of length 2κ > κ+ has higher consistency strength than a 
winning strategy in the corresponding filter game, a distinction which does not arise 
when 2κ = κ+:

Proposition 3.24. The following are equivalent for κ:

(1) Player II has a winning strategy in the game GNSet(κ, 2κ).
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(2) Player II has a winning strategy in the game GSet(κ, 2κ).
(3) κ carries a P2κ-point.

Proof. First we need the following claim:

Claim 3.25. If Player II has a winning strategy in the game GSet(κ, λ), then λ ≤ 𝔟κ.

Proof of Claim. Let us show that any collection 𝒞 of fewer than λ clubs has a pseudo
intersection. Then we apply Proposition 2.2 to conclude that λ ≤ 𝔟κ. Indeed, we 
enumerate 𝒞 = ⟨Cα | α < ρ⟩ for some ρ < λ. Let σ be a winning strategy in GSet(κ, λ). 
Consider a run of the game where Player II plays via σ and Player I plays at stage α < ρ

a legal κ-suitable model Mα such that Cα ∈ Mα. Since ρ < λ, the run reaches stage ρ, 
and we can make Player I play any κ-suitable model Mρ including 

⋃︁
α<ρ Mα. Let Xρ

be the response of σ. Then Xρ generates a κ-complete ultrafilter U on Mρ. Although U
might not extend Cubκ ∩M , by Theorem 2.18 and the subsequent Remark 2.19, there 
is a κ-complete Mρ-ultrafilter such that Cubκ ⊆ Mρ and W ≤RB U . The Rudin-Blass 
projection will project Xρ to a set Y which is a ⊆∗-lower bound for W . Since 𝒞 ⊆ Mρ, 
Y (the closure of Y ) is a club which is a ⊆∗-lower bound for 𝒞, as desired. □

The key consequence of the claim is that (2) implies that 2κ is regular. This is because 
(2) implies 2κ = 𝔟κ, and 𝔟κ is regular.

We now turn to the proof of the equivalence of (1), (2), and (3). The fact (1) implies 
(2) is trivial. To show that (2) implies (3), let σ be a winning strategy for Player II in 
the game GSet(κ, 2κ). Let ⟨Aα | α < 2κ⟩ be an enumeration of P (κ). Consider the run 
of GSet(κ, 2κ) in which Player II plays by σ and at stage α < 2κ, Player I plays a legal 
κ-suitable model Mα that contains Aα and all the sets ⟨Xβ | β < α⟩ produced by σ in 
the previous stages of the run. Let U be the filter generated by ⟨Xα | α < 2κ⟩. Then U is 
indeed an P2κ-point ultrafilter since U measures every set in 

⋃︁
α<2κ Mα, and if 𝒜 ⊆ U is 

of size less than 2κ, then since 2κ is regular, and there is α < 2κ such that 𝒜 ⊆ Mα. By 
the definition of the game GSet(κ, 2κ), the set Xα+1 is a pseudo intersection of U ∩Mα

and therefore of 𝒜. Finally, to see that (3) implies (1), we fix a P2κ-point U . The winning 
strategy for Player II is defined at stage α to return a set Xα that diagonalizes U ∩Mα. 
Such a set Xα exists since U is a P2κ -point and since |Mα| < 2κ. □

In fact, a weaker hypothesis than a winning strategy in GSet(κ, 2κ) already has con
sistency strength beyond o(κ) = κ++:

Theorem 3.26. If Player II has a winning strategy in GNSet(κ, κ+ + 1), then there is an 
inner model with a μ-measurable cardinal.

Proof. We may assume there is no inner model with a strong cardinal, and let K be the 
core model. We will repeatedly use the fact that if U is a K-ultrafilter and the ultrapower 
of K by U is well-founded, then U ∈ K. This follows from [32, Theorem 8.13].
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Let σ be a strategy for Player II in GNSet(κ, κ+ + 1). Let ⟨Sα : α < κ+⟩ enumerate 
H(κ+) ∩ K. We construct a run r of GNSet(κ, κ+) in which Player I plays κ-suitable 
models Mα with Sα ∈ Mα and Player II responds according to σ. Let A = σ(r⌢⟨H(κ+)∩
K⟩) and let U be the K-normal K-ultrafilter ⊆∗-generated by A. Note that U ∈ K since 
U is a V -countably complete K-ultrafilter.

Let T ⊆ κ+ be such that H(κ+) ∩ K ∈ L[T ]. Let N = L[A, T ]. Finally, let M =
H(κ+)∩N . Note that |H(κ+)∩N | = κ+ since (2κ)N ≤ κ+ by a standard condensation 
argument.

We have that H(κ+) ∩K = H(κ+) ∩KN since above ℵ2, K is obtained by stacking 
mice [21, Lemma 3.5].

Let B = σ(r⌢⟨M⟩), and let W be the M -normal M -ultrafilter ⊆∗-generated by B. 
Let j : N → NW be the ultrapower of N by W , which is well-founded since W is (truly) 
countably complete. Since W ∩K = U ∈ K, P (κ) ∩K = P (κ) ∩KNW . Since A ∈ NW

and P (κ)∩K ∈ NW , U ∈ NW . Using the closure of KNW under NW -countably complete 
ultrafilters, U ∈ KNW .

Let D be the K-ultrafilter on Vκ∩K derived from j and U . Then D ∈ K since (again) 
K is closed under countably complete ultrafilters. Let

k : (H(κ+) ∩K)D → j(H(κ+) ∩K)

be the factor map. Note that k([id]D) = U and k ↾ (κ + 1) is the identity, so [id]D =
U ∩ (H(κ+) ∩K)D = U . Therefore D witnesses that κ is μ-measurable in K. □
Remark 3.27. A somewhat similar argument can be used to show that if Player II has a 
winning strategy in GSet(κ, κ+ + 2), then there is an inner model with a μ-measurable 
cardinal. We leave open the question of whether a winning strategy for Player II in the 
game GSet(κ, κ+ + 1) already implies an inner model with a μ-measurable cardinal.

4. Questions

Question 4.1. What is the consistency strength of having 𝔱κ > κ+ for a regular cardinal 
κ > ω?

Note that by Zapletal [33], this is at least o(κ) = κ++. In this paper, we show that 
for a measurable cardinal κ, the consistency strength jumps above o(κ) = κ++.

Question 4.2. What is the exact consistency strength of the existence of a Pκ++-point on 
an uncountable cardinal κ?

Question 4.3. What is the consistency strength of Player II having a winning strategy in 
the game GFilter(κ, κ+ + 1)?

Note that there is an upper bound of o(κ) = κ++.
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