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1. Introduction

For a cardinal A, a point x in a topological space X is called a Py-point if the inter-
section of fewer than A\-many open neighborhoods of = contains an open neighborhood
of z. Of course, every isolated point is a Py-point for every A. Interpreting this definition
in the space U(Y') of uniform ultrafilters on Y gives rise to the notion of a Py-point
ultrafilter, which translates to the following combinatorial condition: a uniform ultrafil-
ter U over Y is a Py-point if the poset (U, D*) is A-directed.® Namely, for any p < A
and any collection (X; | ¢ < u) C U there is X € U such that X C* X, for all i < p.
This type of ultrafilter on w has been studied in numerous papers (e.g. [8,9,12,29]). On
regular uncountable cardinals, relatively little is known. Baker and Kunen [1] have some
constructions of such ultrafilters and lately the first author [5] used such ultrafilters to
address a question of Kanamori regarding cohesive ultrafilters from [23].

The notion of a Py-point ultrafilter has appeared naturally in classical constructions.
The most relevant one here is due to Kunen [24, Chapter VIII Ex. (A10)], which used
a finite support iteration of the Mathias forcing (see 3.9) to construct an ultrafilter
on w which is generated by fewer than c-many sets. The Mathias forcing associated to
an ultrafilter U € B(w) \ w is a ccc forcing that adds a subset of w that is eventually
included in every set in U. By iterating Mathias forcings associated to a carefully chosen
sequence of ultrafilters, Kunen adds a C*-decreasing sequence of sets, and by performing
an iteration whose length A has uncountable cofinality, he produces a sequence that
generates an ultrafilter in the generic extension. This ultrafilter is a Pes(y)-point which
is moreover simple: a simple P,-point is an ultrafilter U that has a generating sequence
(Xi | i < py CU that is C*-decreasing.

In an unpublished work, Carlson generalized Kunen’s construction to construct a
simple Py-point on a measurable cardinal, starting from a supercompact cardinal. This
establishes the consistency of a k-complete ultrafilter over a measurable cardinal x which
is generated by fewer than 2%-many sets. The question of the consistency strength of a
uniform ultrafilter on a measurable cardinal x which is generated by fewer than 2“-many
sets remains open.

Cardinal characteristics at measurable cardinals. Unlike the situation on countable sets,
the generalized Kunen method is currently the only known method to separate the gen-
eralized ultrafilter number u, from the powerset of a measurable cardinal and therefore
plays an important role in the landscape of the recent interest in generalized cardinal
characteristics [3,4,13,19,25,33].

There are several known techniques for controlling generalized cardinal invariants
[17,14,11], all of which are incompatible with controlling the ultrafilter number. Brook-
Taylor, Fischer, Friedman, and Montoya [13] used variations of the generalized Kunen
construction to establish that it is consistent for many generalized cardinal characteristics

3 For A, B C Y, the relation A C* B stands for |A\ B| < |Y].
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to be equal yet smaller than 2*. Their forcing adds a simple Py-point. In Section §2, we
show that the existence of a simple Py-point alone implies the equality of many of these
characteristics.* More precisely, we prove the following theorem:

Theorem 1.1. Suppose Kk < A are regular uncountable cardinals and there is a simple
Py-point on k. Then

u, =ul" =by,

In particular, if 1 # X is regular, then there are no simple P,-points on k.

The effect of a simple Py-point on cardinal characteristics on w was already noticed
by Nyikos [29] and further investigated by Blass and Shelah [9], and Brendle-Shelah
[12]. Nyikos proved that if there is a simple Pj-point on w, then either A = b, or d,. In
sharp contrast to Theorem 1.1, Brauninger—-Mildenberger [10] recently showed that it is
consistent for there to be a simple Py-point and a simple P,-point for p # A.

Theorem 1.1 shows that new methods are needed to obtain a model with a small
ultrafilter number u, which is not, for example, equal to the bounding number b, or
the dominating number .. (Of course, one can add many Cohen functions to x, which
blows up u, to 2% while preserving b,,.)

Question 1.2. Is it consistent with a measurable cardinal to have 0, < u, < 257 how
about b, < u, < 287?

Another method for dealing with cardinal characteristics at the level of a measurable
cardinal is the extender-based Magidor-Radin forcing of Merimovich [26]. In particular,
Ben-Neria—Gitik [4] and Ben-Neria-Garti [3] used this technique to obtain results re-
garding the splitting number s, and reaping number t, at this level. To generalize the
above analysis of cardinal characteristics to this framework, we introduce the notion of
a simple pseudo-Py-point (see Definition 2.24) and show:

Theorem 1.3. In the model of [3], there is a simple pseudo-Py+-point.
Theorem 1.4. If there is a simple pseudo-P\-point, then
A=7uU, =b, =0, =5, = t,..

We also reduce the large cardinal upper bound of the claim “k is measurable and
t, < 277 below o(k) = k3.

4 Let us mention that in the model of [13], there are other characteristics, such as i., Py, 0y, t,., and
various invariants of category, that also coincide with the value of A\. We do not address these cardinals in
this paper.
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The consistency strength of a P,++-point. [5] raises the question: what is the consistency
strength of the existence of a Py-point for A > xT? As we mentioned, it is possible to
start with an indestructible supercompact cardinal and force such an ultrafilter, but this
is clearly an overkill since a supercompact cardinal cannot be the first a such that «
carries a P,++-point. A trivial lower bound comes from the fact that we have to blow up
the powerset of a measurable cardinal for such an ultrafilter to exist, and by Mitchell-
Gitik [27], this implies an inner model with a measurable cardinal x of Mitchell order
o(k) = k1. Gitik proved [5, Thm. 5.2] that o(x) = k*T is not enough and at least
an inner model with a p-measurable cardinal is required.” Here we improve this lower
bound to a 2-strong cardinal, and more generally:

Theorem 1.5. Suppose that the core model K exists, and that in V there is a measurable
cardinal k carrying a Py-point for some X\ > k™ regular. Then there is an inner model
with a A-strong cardinal.

The proof uses an analysis of the iterated ultrapower of K arising from the restriction
of jy to K, where U is a Py-point.

Finally, we provide three applications of this type of lower bound. The first is to show
that the statement that t, > k™, where t,. is the generalized tower number associated
to a measurable cardinal k, has consistency strength greater than o(x) = x*+. This is
related to the result of Zapletal [33] and Ben-Neria—Gitik [4] that the statement “s,, >
for a regular £” is equiconsistent with o(k) = k™. Since t, < s, then t, > s for a
regular cardinal & is also at least at the level of o(k) = £ T. The following improves this
when adding the measurability of k:

Theorem 1.6. Suppose that x is measurable and t. > xT then there is an inner model
with a p-measurable.

The second application is to show that the generalization of Kunen’s construction
cannot be carried from the assumption of o(k) = k™

Corollary 1.7. Let k be measurable in V, and U € V be a k-complete ultrafilter over k.
Suppose that V- C M is a larger model in which k is measurable and M contains and V -
generic set for the generalized Mathias forcing My . Then in K there is a pu-measurable
cardinal.

Hence if one wishes to obtain a small ultrafilter number at a measurable cardinal from
optimal assumptions, then a new method is required.

The third application relates to the filter games of Holy-Schlicht [22], Nielsen-Welch
[28] and Foreman-Magidor-Zeman [18]. These games revolve around the following idea:

5 A p-measurable cardinal is cardinal & which is the critical point of an elementary embedding j : V — M
such that {X C k| k € j(X)} € M. Such a cardinal is a limit of cardinals § with o(§) = 22’
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two players, Player I and Player II take turns. First, Player I plays a submodel M of
H(x™) of size k and Player II responds with an object that determines a x-complete (or
even normal) ultrafilter on that model. In one variant of the game, the object played by
Player II is an M-ultrafilter, but in another variant, Player II is required to play a single
set, external to M, that generates an M-ultrafilter modulo bounded subsets of x. In the
next round, Player I extends M to a model M’ and Player II must extend the previous
ultrafilter to measure sets in M’.

Under the assumption of 2 = k¥, the existence of a winning strategy for Player II
(in either of the games) is equivalent to x being measurable. Here, we consider these
games of length ~, where v € [£7,2%). Our main observation is that the consistency
strength of a winning strategy for Player II in the game where they play filters is still
just a measurable cardinal, and that the consistency strength jumps past o(k) = k*+
(again, involving p-measures) if Player II is required to play sets.

This paper is organized as follows:

e In Section 2, we present our results regarding cardinal characteristics and simple Py-
points. In Subsection 2.1 we focus on the m-character variations and in Subsection
2.2 we consider the Extender-based Magidor-Radin model.

e In Section 3, we provide our lower bound on the existence of a Py-point.

e In Sections 3.3, 3.2, 3.4 we prove our three applications.

Notation. For a set X and a cardinal a we let [X]* ={Y C X | |Y| = a}. For A € [k]" we
let f4 : kK — k be the increasing enumeration of the set A. Namely, f4 is the inverse of the
transitive collapse of A. Given two ultrafilters U, W on X, Y resp. we say that U <gpx W
if there is a function f:Y — X such that A € U iff f~[A] € W. A measurable cardinal
is an uncountable cardinal x such that there is a non-trivial x-complete ultrafilter on «.
Given an ultrafilter U over X, we let jy : V — Ult(V,U) ~ My be the usual ultrapower
embedding associated to an ultrafilter, and My is the Mostowski collapse of Ult(V,U)
(which we identify with My from this point on, whenever Ult(V,U) is well-founded).
A X\-supercompact cardinal is a cardinal x such that there is a x-complete fine normal
ultrafilter on P, (). A supercompact cardinal is a Ad-supercompact for every \. A A-strong
cardinal is a cardinal x such that there is an elementary embedding j : V — M with
crit(j) = k, M is closed under s-sequences and V. yx C M. A p-measurable cardinal
was defined in footnote 5. This is equivalent to the existence of a u-measure; that is, a
k-complete ultrafilter U over  such that {X C k| k € juy(X)} € My

8 For the non-trivial direction, fix j : V — M as in footnote 5. Since |Vi| = k, it suffices to find an
ultrafilter U over V,, such that {X C k : k € jy(X)} € My. To do this, let U be the ultrafilter over
V,, derived from the point D = {X C k | k € j(X)} € M, noting that D € j(V,). Let k : My — M
be the factor embedding given by k([flv) = j(f)(D). Let D = [id]y. Then k(D) = D. In particular,
k=D = k(UD) € ran(k), and it follows that crit(k) > . Therefore k is the identity on P(x), and so
the fact that k(D) = D implies D = k~'[D] = D. Finally, if X C &, we have x € jy(X) if and only if
k=k(k) € k(ju(X))=7j(X);s0{X Ckr:k€ju(X)} =D € My, as desired.
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If M is a transitive model of ZFC™ and X € M, an M -ultrafilter on X is an ultrafilter
U on the Boolean algebra P(X)NM. The ultrapower of M by U is the quotient of M~XNM
under the equivalence relation associated to U. An M -normal ultrafilter (also known as
an M-normal M-ultrafilter) is an M-ultrafilter U on an ordinal x € M such that for any
sequence (Ag)a<k € M, AqcAq €U.

If k is a cardinal and U is an M-ultrafilter, U is k-complete if U extends to a k-
complete filter in V', or equivalently, if the intersection of fewer than x elements of U is
nonempty. In general, this is distinct from the notion of M -k-completeness, which only
requires that if (., Aa € U whenever (Aq)a<y € US" N M. Since the models M we
consider are usually closed under sequences of length less than «, this distinction will
not be important here.

2. Crushing cardinal characteristics

Let k be a regular uncountable cardinal. We denote by “k the set of all functions

f k= k. On "k we have the almost everywhere domination order denoted by <*, and
defined by

f<giff 3o <k Va <8<k, f(B)<g(B)
Definition 2.1. The generalized bounding and dominating numbers are defined as follows:

(1) b, = min{]A| | A C k" is unbounded in ("x, <*)}.
(2) 9, = min{|A| | A C k" is dominating in (*x, <*)}.

These cardinal invariants can be characterized using the club filter
Cub, = {A C k| 3C closed unbounded in x, C' C A}.
The almost inclusion order denoted by C* is defined by A C* B iff 3o < k, A\ a C B.
Proposition 2.2 (Folklore).

(1) b, = min{|A| | A C Cub, is unbounded in (Cub,, D*)}.
(2) o, = min{|A| | A C Cub, is cofinal in (Cub,, D*)}.

Proof. For (2), see [6, Claim 4.8]. For (1), let us first prove that b, is bounded above
by the size of any unbounded subset of (Cub,,2*). Let A C Cub, we claim that the
set {fa | A € A} of increasing enumerations of sets in A4 is unbounded in ("x, <*).
Otherwise, let f be a <* bound and let C'y be the club of closure points of f. We
claim that Cy C* A for all A € A. Indeed, let a be such that for every o < 8 < &,

fa(B) < f(B). If v € Cf \ o, then for every 8 € v\ a, 8 < fa(B) < f(B) < ~. Since
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fa(B) € A, it follows that v is a limit point of A. Since A is a club, v € A. This proves
Cy\ o C A, as desired.

For the opposite inequality, suppose that S is unbounded in (“x, <*). Let {Cy | f € S}
be the collection of clubs of closure points of elements of S. We claim that {C} | f € S}
is unbounded. Otherwise, suppose that C' C* Cy for all f € S. Define g(a) = fo(a+1).
We claim that g dominates S, which would lead to a contradiction. To see this, let « be
such that fo(a) = a = fc;(a) and C\ a+1C Cy \ a+ 1. This implies that for 3 > a,
fc; (B) < fe(B). Therefore given > a, notice that § < fo, (8 +1) € Cf, hence

fB) < fe,(B+1) < fe(B+1)=9g(8) O

Given an ultrafilter U on a cardinal k > w, let jy : (V,€) — (My, €y) be the usual
ultrapower construction. Then (jy (), €y) = ("x/U, <) is a linear order and cf" (ji (x))
is a regular cardinal.

Claim 2.3. For every uniform ultrafilter U over k, b, < cf¥ (jy(k)) < 0.

Proof. Clearly, if A is dominating in (“k, <*), then {[f]v | f € A} is cofinal in jy(x).
On the other hand if {[f,]v | @ < A} is cofinal in jy (k). Then it must be unbounded
in ("k,<*), since if g : Kk — kK was a bound in <*  then [g]y < ju(k) would bound
{[fa]u | @ < A}, which is supposed to be cofinal. O

Given a filter F' on x we say that B is a base for F' if B C F and for every A € F,
there is B € B such that B C* A. Define:

(1) ch(F) = min{|B| | B is a base for F'} is the character of F.
(2) u, =min{ch(U) | U is a uniform ultrafilter on x} is the ultrafilter number
(3) u¢e™ = min{ch(U) | U is a k-complete ultrafilter on x} is the complete ultrafilter

number

The depth spectrum, introduced in [5], is the set Spy,(F) of all regular cardinals A for
which there exists a C*-decreasing sequence (X; | i < \) C F with no C*-lower bound
in F'. Also define the depth of F by:

t(F') = min Spy, (F)

Remark 2.4. Note that t(F) is a regular cardinal. The notation emphasizes that t(F)
is an analog of the well-known tower number. In [5, Prop. 4.14] it was shown that
t(F) = min(Spp(F, 2*)) where Spp(F,2*) = {\ € Reg | A <p (F,2*)}. Here <r is the
well-known Tukey order (see for example [15]).

In the case F' = Cuby, it is not hard to see that t(Cub,) = b, and ch(Cub,) = 0.
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Claim 2.5. Let U, W be ultrafilters. If U <pg W then
t(W) < t(U), ch(U) < ch(W).

Proof. The right inequality is well-known, and the left follows from the fact that if
U <rx W implies that (U, 2*) <r (W, 2*) (see for example [16, Fact 1]) and therefore
Spr (U, 2*) C Spp(W, 2*) which ultimately implies (W) < t(U). O

Proposition 2.6. Let U be a k-complete ultrafilter over k. Then:

(1) v, < ch(U).
(2) t(U) < b,

Proof. For (1), let U* be a normal ultrafilter RK-below U, then c¢h(U*) < ch(U). Let B
be a base for U* and C = {b | b € B} C Cub,. We claim that C is a generating set for
Cub,. Given any club C, since U* is normal, C' € U* and therefore there is b € B such
that b C* C. Since C' is closed, b C* C, as wanted.

For (2), again we may assume that U is normal. Note that every sequence of clubs
(C; | i < k) for k < t(U) has a lower bound in U and therefore the closure of that lower
bound would be a club-bound. Hence t((U) < b,. O

Lemma 2.7. b, <u,, <u’™

Proof. The nontrivial inequality b,, < u,, will follow from a more general fact regarding
the reaping number in Lemma 2.22 and Theorem 2.23. O

Definition 2.8. For a uniform filter F' over x, we say that:

(1) F is a Py-point if (F,D*) is A-directed. Namely, if for every A C F', |A| < A, there
is B € F such that B C* A for all A € A.

(2) F is a simple Py-point if there is a C*-decreasing sequence (X; | i < A) C F that
forms a base for F.

(3) p(F) =min{A | F is not a Py+-point}.

Note that Fis a simple Px-point if and only if F' is a simple Pe(y)-point. Hence we will
only consider simple Py-point for regular A’s. Also, note that if U is a uniform ultrafilter
that is a simple Py-point over x, then A must be at least ™, and therefore U must be
k-complete. It was proven in [5] that t(F) = p(F'). In [5, Lemma 4.23] it was proven that
F is a simple Py-point if and only if t(F) = ch(F) = A.

Corollary 2.9. For a regular cardinal A, Cub, is a simple Py-point if and only if A =
0, = by
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Theorem 2.10. If kK < A are reqular uncountable cardinals and U is a simple Px-point
ultrafilter on K, then A =0, = b, = u,, = ul’™.

Proof. Indeed, by Proposition 2.6(2), and Lemma 2.7, A = t(U) < b,; < u,. Also, by
2.6(1) 0, < ch(U) = A and clearly u,, < uf™ < ch(U) = A. So by the fact that U is a
simple Py-point we get the desired equality. O

Corollary 2.11. If v and X are regular and there are simple Py-point and P,,-point ultra-
filters over k > w, then u = \.

This is not the case on w. Nyikos [29] showed that the set of regular cardinals A for
which there is a simple Py-point ultrafilter on w has cardinality at most two; recently,
Brauninger-Mildenberger [10] proved a spectacular result that it is consistent with ZFC
that there are simple Py,-point and Py,-point ultrafilters on w.

Corollary 2.12. For a reqular uncountable cardinal K, if there is a simple Py-point ultra-
filter over k, then cf(ju(k)) = A for every uniform ultrafilter on k.

2.1. w-characters, splitting, and reaping numbers

Let us consider a well-known weakening of the characteristics from the previous sec-
tion. We say that B is a m-base for a uniform ultrafilter U on « if B C [«]" and for every
A € U, there is B € B such that B C* A.

meh(U) = min{|B| | B is a m-base for U}

mu, = min{wch(U) | U is a uniform ultrafilter over x}

com

mur’™ = min{wch(U) | U is a k-complete ultrafilter over s}

Clearly, the above characteristics are all less than or equal to their respective m-free
versions. The 7-depth spectrum is the set Sp, 4,(U) of regular cardinals A for which
there exists a C*-decreasing sequence (X; | i < A) C U that is unbounded in ([£]*, D).
From this we can define the m-analog of t:

7t(U) = min Sp, 4,(U)

Definition 2.13. U is a mPy-point if every A C U of cardinality less than A has a pseudo-
intersection. Namely there is B € [k]* such that B C* A for all A € A.

Once again, we note that we may restrict our attention to mPy-points where \ is
regular and that such a lambda must be of cofinality at least ™.

mp(U) = min{\ | U is not a mPy+-point}
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Remark 2.14.

(1) Spy 4p(U) € by (U).

(2) H(U) < 7p(U) < 7t(U) < weh(U) < ¢h(U). The inequalities mp(U) < wt(U) and
weh(U) < ch(U) are immediate from the definitions. To see 7t(U) < wch(U) suppose
towards a contradiction that mt(U) = Ay > weh(U) = Ao, let (X; | i < A1) C U be
C*-decreasing witnessing A1 € Sp, 4,(U), and let (by | @ < Ag) be a 7-base for U. For
each X;, there is some a; < Ao such that b,, C* X;. There are unboundedly many
i’s such that a; = o* and therefore b,+ would be a lower bound for (X; | ¢ < A1) in
([]", C*), contradiction.

For t(U) < mp(U), recall that t(U) = p(U) and if U is not a mPy+-point then U is
also not a mP)+-point.

Question 2.15. Is 7t(U) = 7p(U)?

Remark 2.16. One can define the above m-characteristics for filters. For the club filter
however, we have that wch(Cuby) = ch(Cuby), 7t(Cub,) = t(Cuby), and 7p(Cub,) =
p(Cuby).

We say that f : k — & is almost one-to-one modulo an ultrafilter U if there is X € U
such that f [ X is bounded-to-one, namely, for every v < &, 7~ 1[{7}] N X is bounded in
k. The following is a generalization of the well known Rudin-Blass ordering of ultrafilters

on w:

Definition 2.17. Let U, W be ultrafilters over k. We say that an ultrafilter U is Rudin-
Blass below W, and denote it by U <gp W if there is an almost one-to-one mod W
function f : k — k such that f,(W) ="U.

Theorem 2.18 (Kanamori, Ketonen). Let U be a countably complete uniform ultrafilter
over a reqular cardinal k. Then U is RB-above an ultrafilter which extends the club filter.

Proof. First, we claim that if W is an uniform ultrafilter on a regular uncountable
cardinal s such that no function that is almost one-to-one modulo W is regressive on a
set in W, then W extends the club filter. To see this, note that any nonstationary set
A C k supports a monotone regressive function g : A — k. (Namely, let C C k\ A be
club, and let g(a)) = sup(CNa) for a € A.) Therefore W cannot contain a nonstationary
set, and hence W extends the club filter.

To prove the theorem, let f : kK — k be the <y-least function that is almost one-to-one
modulo U, and let W = f,(U). Note that W <gp U is a uniform ultrafilter on x such
that no function that is almost one-to-one modulo W is regressive on a set in W, and
hence W extends the club filter. O
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Remark 2.19. The assumption of countable completeness in the previous theorem can be
improved to the assumption that there is a least almost one-to-one function modulo U.
Also, the argument adapts to countably complete M-ultrafilters where M is a transitive
model of ZFC™.

Theorem 2.20. If U <pp W then mt(W) < 7nt(U) and wch(U) < wch(W).

Proof. Let g : K — & be such that g.(W) = U and let X € W be such that g | X is
almost one-to-one. Let (X; | ¢ < A) be a m-base for W. By shrinking the sequence to
another m-base, we may assume that for every ¢ < A, X; C* X. This means that g[X;]
must be unbounded in k. It is clear now that (g[X;] | i < A) is a m-base for U. For the
other inequality, let (Y; | i < A) C U be C*-decreasing with no pseudo-intersection. Then
(g7 'Y;] | # < A) must also be C*-decreasing. If the sequence had a pseudo-intersection
Y, then ¢[Y] would have been a pseudo-intersection of the Y;’s. Note that if we start
with a sequence (Z; | i < A) C W with no pseudo-intersection, then g[Z;] is indeed
C*-decreasing, but this sequence might have a pseudo-intersection. 0O

Theorem 2.21. For any countably complete uniform ultrafilter U on k, weh(U) > 0, and
7t (U) < by.

Proof. By Theorem 2.18, we can find U* <gp U such that U* extends the club filter.
By Theorem 2.20 it sufficed to prove the inequalities for U*. The argument for U* is a
straightforward generalization of Proposition 2.6. O

The countably completeness assumption will be removed using Lemma 2.22 and The-
orem 2.23.

Let us introduce the splitting and reaping numbers. We say that A splits B if AN B
and B\ A are unbounded in k. We say that A is a splitting family if every X € [k]" is
splittable by some A € A. We say that A C [k]* is unsplittable, if there is no A € [k]*
that splits every A € A.

(1) s, = min{|A| | A is a splitting family}.
(2) v, = min{|A| | A is a unsplittable family}.

Evidently, A is unsplittable if for example, A is a w-base of a uniform ultrafilter. Hence
t, < meh(U). In fact B. Balcar and P. Simon proved that v, is always realized by a

m-base of a uniform ultrafilter [2].

Lemma 2.22. Let U be a uniform ultrafilter over k.

(1) 7ch(U) = v
(2) mp(U) < s
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Proof. (1) is trivial as we observed above. For (2), let (S; | j < s,.) be a splitting family.
For every j, either S; or x\ S; is in U. If s,, < mp(U), then these sets would have a
pseudo-intersection which couldn’t be split by any of the S;’s. This is a contradiction. O

Theorem 2.23 (Raghavan-Shelah [30]). Let k be an inaccessible cardinal, then:

(1) 0 <ty
(2) s, < by.

The following is a generalization of a simple Py-point.
Definition 2.24. We say that an ultrafilter U is a simple 7w Py-point if 7p(U) = A = wch(U)
Since t(U) < mp(U) < weh(U) < ch(U), a simple Py-point is a simple 7 Py-point.

Corollary 2.25. If there is a uniform simple wPy-point on k then A = wu, =0, = b, =
S, = Ty.

Proof. This follows from Theorem 2.21, Lemma 2.22, Theorem 2.23. O

Question 2.26. What about a,,i., P, t.? Are they determined in the presence of a simple
Py-point?

2.2. Another look at the extender-based model

In [4], Ben-Neria and Gitik used the Merimovich extender-based Magidor-Radin forc-
ing from [26] in order to prove that it is consistent that the splitting number at a regular
uncountable cardinal « is a regular cardinal A > x* from the existence of a measurable
k with o(k) = \.

The following summarizes the relevant properties of a generic extension M = V[G]
via the extender based Magidor-Radin forcing: x < A are regular uncountable cardinals
of M and there are intermediate models (M; | i < A) of ZFC and sequences (U; | i < A)
and (k; | ¢ < A) in M such that:

(1) If i < j then M; C M;.

(2) U; € M; and M; =U; is a normal ultrafilter.

(3) ki € [k]" diagonalizes U; (i.e. k; C* X for every X € U;). Also k; € M, for all j < i.
(4) PO™ = U,y P(r)™,

In [5], these properties were used to prove that in V[G], the club filter is a simple P-
point. Combining this with 2.9:

Corollary 2.27. If (1) through (4) hold, then M = b, =0, = A.
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Let us show how to deduce that the splitting number is large:
Proposition 2.28. If (1) through (4) hold, then M |=s,, = A.

Proof. Since s,, < 0, it suffices to prove that A < s,.. Suppose that S € M is a collection
of subsets of x of size less than . By items (1) and (4), there is some ¢ < A such that
S C P(k)™i. By (2), for each X € S, either X € U; or k\ X € U;. By (3), k; diagonalizes
U;, and therefore, for each X € S, either k; C* X or k; C* £\ X. So k; is not split by

any member of S. O
The conditions (1) through (4) also determine the value of the reaping number:
Proposition 2.29. If (1) through (4) hold, then M |= v, = cf()\).

Proof. Again, since b, < t,, it suffices to prove that v, < cf(X). Let {a; | i < cf(A\)} € M
be cofinal in A. We claim that {k,, | ¢ < cf(\)} is a reaping family. To see this, let X € M
be any subset of k. By (4) there is ¢ such that X € M;. Let ig < A such that ¢ < ay,.
By (1), X € M,,, and by (2), either X € Uy, or K\ X € Uy, - By (3), ka,, C* X or
ko, € £\ X, as desired. O

Corollary 2.30. In the models of [/], b, =0, =tx =8, =TT = 2",
Corollary 2.31. In the models of [3], b, =0, =1, =8, = KT < 2",

This reduces the upper bound on the consistency results obtained by Brooke-Taylor—
Fischer—Friedman—Montoya [13] from a supercompact cardinal to the low levels of strong
cardinals.

To obtain the configuration of the reaping number above, Ben-Neria and Garti [3]
prove that some of the ultrafilters U; cohere, that is:

(5) There is an unbounded S C A such that for every ¢ < j in S, U; C U;.

They used (5), for example, to deduce that x is measurable in M. In fact, the ultrafilter
they produce is a x-complete simple 7 Py-point:

Theorem 2.32. Assume that (U;,| i < A),(k; | i < A) € M and (1) through (5) hold.
Then in M there is a normal ultrafilter U which is a simple wP\-point. In particular,
Tuse™ = .

Proof. Consider the ultrafilter U = ;. ¢ U;. It is easy to see that wch(U) < A. We claim
that A < 7p(U), which finishes the proof. Suppose that (X; | i < p) C U, for some p < \.
Then, similar arguments show that there is j < A such that k; is a pseudo-intersection
for the sequence (X; | i < p). O
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It is an open problem whether one can obtain u, = kT < 2% at an inaccessible
cardinal x from much less than a supercompact cardinal. The previous theorem shows
that current techniques suffice to obtain the analogous result for 7u, from hypotheses
at the level of strong cardinals.

In fact, to obtain a model M satisfying (1) through (5), the authors of [3] used a
measurable cardinal x such that o(k) is a weakly compact cardinal above x. However, if
we only wish to keep x measurable and play with the values of t,, and s,,, we only need to
secure (1) through (4), and therefore we can get away with much less; for example, o(k) =
kT4 suffices. (This uses [26, Claim 5.9] to ensure the preservation of measurability.)

Question 2.33. Can one determine the values of other generalized cardinal characteristics
at k in the extender-based Magidor-Radin model?

3. Lower bounds
3.1. The strength of a Py\-point

Gitik showed that if there is P,++-point then there is an inner model with a u-
measurable. The argument can be found in [5]. In terms of consistency strength, this is
already above o(k) = k*T. Here we improve his result a bit.

Lemma 3.1. Suppose j : V. — M is an elementary embedding with critical point k and
a < ((28)T)M . Let D be the ultrafilter on x derived from j using o and k : Mp — M be
the canonical factor embedding. Then crit(k) > a.

Proof. Let f € ran(k) be a surjection from P(k) onto « + 1, which exists since k[Mp]
is an elementary substructure of M and {k,a} € k[Mp]. Since P(k) C Mp, we have
P(x) Cran(k). Hence o + 1 = f[P(x)] Cran(k). O

Theorem 3.2. If there is a Pi++-point U, then there is an inner model with a 2-strong
cardinal.

Proof. Assume towards a contradiction that there is no inner model with a 2-strong
cardinal. Let Ej be the first extender used in the unique normal iteration i : K — jy (K).
Note that this iteration exists and ¢ = jy | K by Schindler’s theorem [31, Corollary 3.1].
(In fact, for core models at the level of strong cardinals, the theorem is due to Steel [32,
Theorem 8.13].) Then jy [ K = k oig,, where k is the embedding given by the tail of
the iteration and the critical point of k is some Mp,-measurable cardinal greater than &
(and so above (kT+)MEo). Let v be the supremum of the generators” of Ey. Note that
v < (kt+)MEo since otherwise, by coherence and the initial segment condition on the

7 A generator of Ey is an ordinal § such that for every o < & and every f : k — r, ju (f)(a) # 8.
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extender sequence of the core model, Ey | (kT1)MEo € Mg, and witnesses that x is
2-strong in Mpg,, contradicting the anti-large cardinal assumption of the theorem. Also
(kT T)Meo < (k1)K since otherwise Ey witnesses that & is a 2-strong cardinal in K.

For each a < 7, the measure Ey(a) is a subset of U,, where U, is the V-ultrafilter
derived from jy and k(). In particular, U, <grx U via some function f, : K — k. Since
2% = kTt in K and since U is a Py++-point, there is a set B, € U such that f,[B,] C* X
for all X € Eg(a): let B, € U be a C*-lower bound of {f;![X]: X € Eo(a)}. Since
v < kTt and again since U is a P,++-point, we can find a single B € U such that
B C* B, for all a < 7. Note also that Ey(a) = {X € PX(k) | fa|Ba] €* X}. Since
ju | K is an iteration of K with critical point k, PX (k) = pEMY (k). Using the fact
that fo[Ba] € My we have that Ep(a) € My.

Let U’ be the filter on x that is C*-generated by B. Then U’ € My;. Let us claim that
Ey can be reconstructed in My from U’, which will lead to a contradiction (since it will
imply that Ey € Mg, ).

Claim 3.3. For each o <y, Ey [ o € My

Proof. As we already noticed, Eg(a) € My. By Lemma 3.1, applied to j = jg,, we
conclude that Fy | « is the extender of length o derived from jg, (o) | PX(k), which
belongs to My. 0O

Claim 3.4. Fy € My.

Proof. We will prove that there is a formula ¢(xg, 21, 2, x3) in the language of set theory
such that for any o < 7, Ey | a the unique F' € My such that My E ¢(F, .., U’, «).
Then {Ey | @ : @ < v} € My, which proves the claim.

To be precise, p(F, f.,U’, a) states that F is a K-extender of length «, (2%)tKF > q,
and there is a family of functions (g, : a € [@]<¥) such that:

(1) Each F, C (g4)«(U").
(2) For each a C b, mgp 0 gp = g, mod U’, where 7, is the usual map from !l onto
lal
Klal,

(3) Ik = fn~

By condition (1), (94)«(U") N K = F,. Since U’ C U, this ensures that the maps k, :
Kp, — KMv defined by ky([h]F,) = [h o ga]u are well-defined and ji | K = k4 0 j,.
Condition (2) ensures that whenever a C b, k, = kp 0 kqp, where ko : Kp, — Kp, is
the usual factor map defined by kq ([h]F,) = [h o Tpa]F, - Indeed,

ka([hF.) = [hogalu = [homap o golu = ky([h o map]r,) = Kb (Kap([P]F,)-

By the universal property of direct limits, the extender embedding jr : K — Kp factors
into jy | K; i.e., ju | K = ko jp, where k is the direct limit embedding of the k,’s.
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Clearly, Ey | « satisfies the above. For uniqueness, if F' satisfies the above then by
requirement (3) that f, = g., we have F'(k) = Ey(x) and k(x) = k. We claim that the
critical point of k is at least (2%)*57. To see this we simply note that

P(r)NKp = P(k)N K = P(x) N ju(K)

and since crit(k) > &, for every X C k, k(X) = X. It follows that for every Y C P(x),
Y € Kp, k(Y) =Y. It follows that every ordinal 8 < (2%)*Kr k(3) = 8.

Finally note that (2%)*XF = crit(k) > a. Hence for every a € [a]<¥, F(a) is the
ultrafilter derived from jy and a, so F(a) = Ey(a), and hence F = Ey [ . O

Working in My, we appeal to the maximality of K [32, Thm. 8.6]. Since Fy € My
and Ey coheres the extender sequence of KMv, By € KMv, But Ej is the first extender
applied in the normal iteration leading to KV so this is a contradiction. O

3.2. Preserving measurability with Mathias forcing

Theorem 3.5. Suppose k is measurable, the core model K exists, and U € K is a normal
measure on k. Assume that there is a pseudo-intersection A of U such that AN Lim(A)
is unbounded. Then in K, Kk carries a p-measure.

Proof. Let W € V be a k-complete ultrafilter over k.

Claim 3.6. Let o € jw(A) \ k and let W,, be the V-ultrafilter derived from jw and «,
then W, NK =U.

Proof. It suffices to prove that U C W,. For any X € U, by assumption there is £ < &
such that A\ ¢ C X. Hence jw(A) \ £ C jw(X). Since a € jw(A) \ &, it follows that
a € jw(X) and thus X e W,. O

By Schindler [31] (and Steel) again, jy | K is an iteration of K by its measures/exten-
ders. Let (Ko, Eqo,ia,8 : @ < 8 < 6) be the normal iteration of K such that ig o = jw | K;
thus I, is the extender used at stage a and 7o, 5 : Ko — K3 is the canonical embedding.

Claim 3.7. Let o € jw(A) \ k.

(1) « is an image of k under the iteration. Namely, o = ig (k) for some vy < 6.
(2) Suppose that ' > v is the first stage of the iteration where we apply an extender
E. with critical point at least o. Then E.(a) =i (U).

Proof. For (1), first note that « is a sky point; namely, that for every club C' € K on &,
a € jw(C). This is true since U is a normal measure. Now it is not hard to see that for
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any p < 6, and every ig ,(k) < v < 49 p4+1(x), there is a function f : K = x in K such
that v < i,41(f)(i0,p(k)). Hence o must be of the form g (k) for some v < 6.

For (2), we first note that i ./ [U]|UF, C E,/ (o), where F, is the tail filter on a. To see
this, let X € U, then a € jw (X) hence a € iy/41,9(i4 441 (%0,4(X))). By the normality
of the iteration, o € iy 41 (i0,4 (X)) which implies that ig 4 (X) € E, (a). To see that
i0,4/(U) = E4 () it suffices to prove that i/ [U] U F,, generates i (U). This follows

from the normality of U and since every set in ig - (U), is of the form i/ (f)(§) for some
f:[kf = U, f€ K and¢ € [a]<¥. (See [7, Lemma 3.11].) O

Now we are ready to prove that k carries a py-measure in K. Suppose not, towards a
contradiction. Pick any point a* € jw (A) N Lim(jw (A4)) above k. Then by the claim,
fix v < 0 such that a = 4p,(k) and stages {v; | i < n} of the iteration such that
V = vy = sup;., V;, and for each i <, at stage v; of the iteration, we apply an extender
E,, whose derived normal measure is ig ,, (U).

Since x is not p-measurable in K, ig,,(x) is not py-measurable in K., and so the
extender F,, is actually equivalent to its derived normal measure i ,,(U); otherwise, by
the initial segment condition, the derived normal measure would belong to Ult(X,,, E,,),
which implies E,, is a p-measure.

Now the measure io,y,,(U) is definable in My, as the set of all X C «o* that contain
a tail of jw(A) N a*. Applying the maximality of the core model (for example, [32,
Theorem 8.14 (2)]) in Mw, o, (U) € KMW. Since the iteration is normal, we con-
clude that ig,, (U) € io,u,+1(K), which is itself the ultrapower of ig ., (K) by io, (U).
Contradiction. 0O

Remark 3.8. Note that the assumption that A contains unboundedly many closure points
is essential. Indeed, after Radin forcing with a repeat point, x stays measurable and there
is a ground model normal measure which is diagonalized by the successor points of the
Radin club.

Let us use Theorem 3.5 to provide a lower bound on the preservation of measurability
after the generalized Mathias forcing. This is related to the attempt to obtain a small
ultrafilter number at a measurable cardinal using this method.

Definition 3.9. Suppose k<% = k. Given a k-complete filter F' over a measurable cardinal
Kk > w, let Mg be the forcing notion whose conditions are pairs (a, A) € [k]<" x F. The
order is defined by (a,4) < (b,B) ifbCa, AC B,and a\ b C B.

This forcing is k-closed and k-centered. This is an unorthodox definition, but it is
forcing equivalent to the standard one where in the definition of (a, A) < (b, B) we
replace b C a with b C a. Indeed, consider the set of conditions Mj; = {(a, A) | min(A4) >
sup(a)}. Clearly Mj; is dense in My and if (a, A) < (b, B) € My, then min(a \ b) >
sup(b), hence b C a. The reason for presenting the forcing this way is the following simple
lemma;:
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Lemma 3.10. If U <px W then My, projects onto My .

Proof. Let f : kK — k witness that U <px W, we may assume that f is onto. Define
¢ : My — My by é((a,A)) = (f"a, f"A) and we claim that ¢ is a projection. If
(a, A) < (b,B), then f"b C f"a and f"A C f"B. Also if v € f"a\ f"b, the v = f(x)
for some = € a\ b C B, hence v = f(x) € f"B. So (f"a, f"A) < (f"b, f”B). Suppose
that (z,X) < (f"”a, f”A). This means that = \ f”a C f”A. Hence there is ¢’ C A
such that f”[a Ua'] = z. Also since X € U, f~}[X] € W. Consider the condition
p=(aUd, AN f~1[X]). Then p < (a, A) and ¢(p) < (x, X). Hence ¢ is a projection. 0O

Proposition 3.11. Suppose G C My is V -generic and
Ag =|J{a |34, (a,4) € G}.

(1) For every Ac U, Ag C* A.
(2) If Cub, C U, then Ag N Lim(Ag) is unbounded in k.

Proof. The first item is clear, since every condition (z, X') can be extended to a condition
(z, X N A) which forces that Ag\# C A. For the second item, let (z, X) be an condition,
and § < k, we will find a stronger condition which forces some continuity into Ag.
Consider Lim(X) € Cubk. Then X N Lim(X) \ sup(z) € U. Let @ > § be any point in
X N Lim(X), then (zxUX Na+1,X \ a+ 1) forces that a is a continuity point of Ag
above 6. O

Corollary 3.12. Suppose that V[G] is a generic extension where k is measurable, and
there is A € V|G|, a V-generic set for My, where U is a rk-complete ultrafilter in V.
Then there is an inner model with a p-measurable cardinal.

Proof. By Lemma 3.10, we may assume that A is V-generic for My for a normal ultra-
filter U in V. By Proposition 3.11, A diagonalizes the K-normal measure U N K and has
unboundedly many continuity points. Hence we may apply Theorem 3.5. O

3.3. The generalized tower number

Our first application is to give a non-trivial lower bound on the statement “k is
measurable and t, > k17

Definition 3.13. A family A C [x]" has the x-SIP (strong intersection property) if for
every B € [A]<", (B has size k. A pseudo-intersection for A is a set X € [k]® such
that for every A € A, X C* A. A tower in « is a sequence A = (4; | i < A\) C [x]"
such that if 7 < j then A4; 2* A; and A has no pseudo-intersection. The generalized
pseudo-intersection and tower numbers are defined as follows:
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(1) py is the minimum cardinality of a set A C []® that has the x-SIP but has no
pseudo-intersection.
(2) t, is the minimum length of a tower in &.

It is known that k™ < p, <t, < b, (see [13, Lemma 31]). Note that starting with an
indestructible supercompact cardinal x and an appropriate bookkeeping argument, one
can iterate Mathias forcing of length x™F with <x-support to add a diagonalizing set
to any k-complete uniform filter on x which is generated by x*-many sets. This forcing
preserves the supercompactness of x and makes p, = t, = x™ . In the other direction,
if one wishes to obtain t, > kT at a measurable cardinal s, one must violate GCH at
a measurable, which already implies an inner model where o(k) = k*+. Let us improve
this lower bound:

Theorem 3.14. Suppose k is measurable and that t., > x*. Then there is an inner model
with a p-measurable cardinal.

Proof. We first sketch a proof that the existence of a 7P, ++-point implies an inner model
with a y-measurable. In Gitik’s argument to obtain a p-measurable from a P, ++-point U
(which appears in [5]), we needed to reconstruct U N K in the ultrapower My, and this
was done by finding a set A € U such that A C* X for all X € UNK. The purpose of the
set A is to define a filter F' € My which includes U N K. It follows that the assumption
of A being a member of U can be replaced with A being unbounded in k. Therefore the
argument works assuming that U is a 7w P,++-point (Definition 2.13). From this point on,
the argument is identical to Gitik’s.

To conclude the theorem, we claim that if ., > x* and U is normal, then U is a 7P, ++-
point. Otherwise, let (X; | i < k¥) C U be a counterexample. Since U is normal, we can
find a C*-decreasing sequence (Y; | i < kT) C U such that for each i < k*, ¥; C* Xj.
The sequence of Y;’s has no pseudo-intersection, since any such pseudo-intersection would
have also been one for the sequence (X; | i < k). Hence we see that (Y; | i < xT) is a
tower, contradicting t, > xk*. O

This is related to a question of Gitik and Ben-Neria [4, Question 3.2] which asked a
similar question regarding the splitting number.

3.4. Filter games without GCH

The filter games of Holy-Schlicht, Nielsen-Welch and Foreman-Magidor-Zeman revolve
around several filter games defined as follows:

Fix 0 a regular large enough cardinal. A transitive set M is called a k-suitable model
if M C H(k") satisfies ZFC~ and is closed under <s-sequences.

The notion of a constraint function defined below is essentially a notational tool to
allow us to define several families of filter games all at once.
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Definition 3.15. A constraint function is a function C that assigns to each k-suitable
model M a set C(M) of k-complete uniform filters on x such that for each F € C(M),
FN M is an M-ultrafilter.

We will consider the following constraint functions:

(1) Set(M) is the collection of all filters F' such that FFNM is a k-complete M-ultrafilter
and F' is C*-generated by a single set.

(2) NSet(M) is the collection of all filters F' such that F'N M is an M-normal ultrafilter
and F' is C*-generated by a single set.

(3) Filter(M) is the collection of all filters F' such that F N M is a k-complete M-
ultrafilter.

Definition 3.16 (The filter game). Let k be a regular cardinal and let C be a constraint
function. The filter game G¢(k,y) is the two-player game of length ~ defined as follows:
At stage i of the game, Player I plays first a s-suitable model M; of size at most
# - [i], such that |J; ; M; € M;. Then Player II responds with a filter F; € C(M;) which
extends (J,, F}.
The game is played for every stage ¢ < 7. Player I wins if and only if at some stage
i < v, Player II has no legal move.

Recall the following observation of Holy-Schlicht [22, Observation 3.5]:

Proposition 3.17. Suppose that 2% = k*. The following are equivalent:
1) Player I1 has a winning strategy in the game Gnger(r, k™).

3
4

(1)

(2) Player I has a winning strategy in the game G ge(k, k™).
(3) Player I1 has a winning strategy in the game G pgper(r, K7).
(4)

K s measurable.

This proposition shows that assuming GCH, the filter games of length k¥ associated
to any of the various constraint functions above are equivalent. If 2% > xT, this is no
longer obvious, and moreover, it makes sense to consider G¢(k,7v) for v > k™.

We first show that the games of length xT are still equivalent in this context:

Proposition 3.18. The following are equivalent:

(1) Player IT has a winning strategy in the game Gyget(r, k7).
(2) Player I1 has a winning strategy in the game Gge(k, k).

(3) Player IT has a winning strategy in the game G pyper(k, k7).
(4) K is measurable in V[G] where G C Add(k™,1) is V-generic.
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Proof. (1) implies (2) and (2) implies (3) are trivial. So let us begin by showing that (3)
implies (4). We note that in V[G], we have that 2% = kT regardless of the cardinal arith-
metic of the ground model. By the x'-closure of the forcing, every winning strategy for
Player II in the game Grijer(k, ) in V remains a winning strategy in V[G]. Therefore
by Proposition 3.17, & is measurable in V[G].

Finally, we show that (4) implies (1). Suppose that in V[G], x is measurable and
let U be a normal ultrafilter on . Let U be a name such that Ug = U. Consider the
strategy for Player I in Gset(k, k) defined as follows. At stage i < k1, we will have
defined a decreasing sequence (p;);j<; € Add(k™,1). We choose a lower bound p; of these
conditions, forcing UNM; = b, and then Player II plays the filter U; that is C*-generated
by the diagonal intersection of D. 0O

Definition 3.19. A r-suitable model M C H (k") is internally approachable by a sequence
(Nq : a < k™) of k-suitable models if M = |J,_,+ Na and for all § < k*, (N, : o <
B) € Ng.

Definition 3.20. If M is a transitive set and X € M is a set, an M-ultrafilter U on X is
k-amenable if for any A C PM(X) with A € M and [AM <k, UNA€ M.

Theorem 3.21. Player I does not have a winning strategy in the game G pyser(r, K7 if
and only if there are stationarily many internally approachable, k-suitable models M C
H(k™) such that there is a k-amenable, k-complete M -ultrafilter on k.

Proof. Suppose Player I has a winning strategy 7 for Grier (%, ). Then there are club
many M =< (H(x"),7). We claim that for any such M, if M is internally approachable
by a sequence (N, | @ < k%), then there is no k-complete, s-amenable M-ultrafilter.
Otherwise, let U be such an M-ultrafilter, and we will use U to produce a run r which
is played according to 7 but is a win for Player II. (This just means that the run r has
length x* and Player II follows the rules of the game.)

At move a < kT, let Player I play N = 7(r | ), and let Player II respond with
U N N. In order for this to be a valid move for II, U N N has to measure all sets in N,
and for this, it is essential that N C M (since U is just an M-ultrafilter). In fact, we will
show that the model N is an element of M. We do this by proving by induction that
each proper initial segment of the run r is an element of M. Since M < (H(x™"), 1), it
will follow that N = 7(r | a) € M.

Suppose that o < k™ and suppose that r [ 3 € M for all 8 < a. Let v < k™ be large
enough so that r [ 8 € N, for all 8 < a. Now r | « is definable in (H(x"),7) from the
parameter U N N,. Since U N N, is a member of M by s-amenability and since M is
elementary in (H(k"),7), r | a € M.

In the other direction, suppose that Player I does not have a winning strategy, and
let F: [H(kT)]<¥ — H(x") be any function. We will find an internally approachable
model M C H (k™) that is closed under F' and a k-amenable, r-complete M-ultrafilter.
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To do this, we will define a strategy for Player I, and then obtain a losing run played
according to this strategy that will produce the desired M.

Let r be a run in the game of length o < k¥, and we will define o(r). Assume by
recursion have already defined o(r [ ) for every 5 < a. Let o(r) be an elementary
submodel of (H(k™), F) of size k such that

{rile(r18) |8 <a)}Uaco(r)

By our assumption, there is a winning run r for Player II in which Player I plays
according to 0. Let Ny = o(r [ @) and M = J,,.,.+ Na. It is clear that the union of the
ultrafilters played by Player II is a xk-amenable, k-complete M-ultrafilter. 0O

Question 3.22. [22, Observation 3.5] shows that if « is inaccessible and 2% = k™, then
GFiter(k, k1) is determined. If 2¢ > k* can the game fail to be determined?

Equivalently, suppose that there are stationarily many internally approachable, k-
suitable models M C H(x™) such that there is a x-amenable, k-complete M-ultrafilter
on k. Must & be measurable in VAdd(=".1)7

Moving past k1, we first note that:

Remark 3.23. The following are equiconsistent:

(1) o(k) = kTT

(2) 2% > kTt and Player IT has a winning strategy in the game Gijer (5, 2%).

Proof. The equivalence follows from Gitik and Woodin’s computation of the consistency
strength of the failure of GCH at a measurable cardinal [20], once we observe that (2)
is equivalent to x being measurable with 2* > k™. Indeed, if x is measurable, fix a -
complete ultrafilter U over . Then a winning strategy for Player 17 is game G pijter (K, 2)
is given by responding U N M, whenever Player one plays a k-suitable model M. In the
other direction, let ¢ be a winning strategy for Player II in the game G pjjter(k,27).
Let (M, | @ < 2%) be an increasing sequence of k-suitable models such that P(x) C
Ua<ar Mo such that [M,| < |a. Let (Uy | a < 2%) be the M,-ultrafilters produced
by simulating a winning run using o and having Player I playing the models M,. Let
U = Uycan Ua- It is routine to verify that U is a x-complete ultrafilter over k. O

Given this remark and Theorem 3.2, the following proposition shows that a winning
strategy in the set game of length 2% > k% has higher consistency strength than a
winning strategy in the corresponding filter game, a distinction which does not arise

when 2% = kT

Proposition 3.24. The following are equivalent for k:

(1) Player II has a winning strategy in the game Gnget(k,2").
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(2) Player II has a winning strategy in the game Ggei(k, 2").
(3) Kk carries a Pax-point.

Proof. First we need the following claim:
Claim 3.25. If Player II has a winning strategy in the game Gget(k, \), then A < by,.

Proof of Claim. Let us show that any collection C of fewer than A clubs has a pseudo-
intersection. Then we apply Proposition 2.2 to conclude that A < b,. Indeed, we
enumerate C = (C,, | @ < p) for some p < . Let o be a winning strategy in Gget(%, \).
Consider a run of the game where Player II plays via o and Player I plays at stage a < p
a legal x-suitable model M, such that C, € M. Since p < A, the run reaches stage p,
and we can make Player I play any k-suitable model M, including |, o M. Let X,
be the response of o. Then X, generates a k-complete ultrafilter U on M,. Although U
might not extend Cub, NM, by Theorem 2.18 and the subsequent Remark 2.19, there
is a k-complete M ,-ultrafilter such that Cub, C M, and W <gzp U. The Rudin-Blass
projection will project X, to a set ¥ which is a C*-lower bound for W. Since C C M,
Y (the closure of Y) is a club which is a C*-lower bound for C, as desired. O

The key consequence of the claim is that (2) implies that 2" is regular. This is because
(2) implies 2" = b,;, and b, is regular.

We now turn to the proof of the equivalence of (1), (2), and (3). The fact (1) implies
(2) is trivial. To show that (2) implies (3), let o be a winning strategy for Player II in
the game Gget(k,2"). Let (A, | @ < 27) be an enumeration of P(x). Consider the run
of Gget(k,2%) in which Player II plays by o and at stage a < 2%, Player I plays a legal
k-suitable model M, that contains A, and all the sets (Xg | § < a) produced by ¢ in
the previous stages of the run. Let U be the filter generated by (X, | a < 2#). Then U is
indeed an Py«-point ultrafilter since U measures every set in (J,, .ox My, and if A C U is
of size less than 2%, then since 2 is regular, and there is a < 2* such that A C M,,. By
the definition of the game Ggct(k,2"), the set X,11 is a pseudo intersection of U N M,
and therefore of A. Finally, to see that (3) implies (1), we fix a Pox-point U. The winning
strategy for Player II is defined at stage « to return a set X, that diagonalizes U N M.
Such a set X, exists since U is a Pox-point and since |M,| < 2%. O

In fact, a weaker hypothesis than a winning strategy in Gget(%, 2%) already has con-
sistency strength beyond o(k) = k*+:

Theorem 3.26. If Player II has a winning strategy in G nget(k, kT + 1), then there is an
inner model with a p-measurable cardinal.

Proof. We may assume there is no inner model with a strong cardinal, and let K be the
core model. We will repeatedly use the fact that if U is a K-ultrafilter and the ultrapower
of K by U is well-founded, then U € K. This follows from [32, Theorem 8.13].
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Let o be a strategy for Player IT in Gysei(k, 57 + 1). Let (S, : @ < k) enumerate
H(k*) N K. We construct a run 7 of Gnget(k, k1) in which Player I plays r-suitable
models M, with S, € M, and Player II responds according to o. Let A = o(r~(H (k)N
K)) and let U be the K-normal K-ultrafilter C*-generated by A. Note that U € K since
U is a V-countably complete K-ultrafilter.

Let T C k* be such that H(k*t) N K € L[T]. Let N = L[A,T]. Finally, let M =
H(kT)N N. Note that |[H(k*) N N| = k¥ since (25)Y < k¥ by a standard condensation
argument.

We have that H(k*t) N K = H(k%) N K since above Ny, K is obtained by stacking
mice [21, Lemma 3.5].

Let B = o(r~(M)), and let W be the M-normal M-ultrafilter C*-generated by B.
Let j : N — Ny be the ultrapower of N by W, which is well-founded since W is (truly)
countably complete. Since WN K =U € K, P(k) N K = P(k) N K¥W. Since A € Ny
and P(k)NK € Ny, U € Ny . Using the closure of K™ under Ny -countably complete
ultrafilters, U € KNw .

Let D be the K-ultrafilter on V, N K derived from j and U. Then D € K since (again)
K is closed under countably complete ultrafilters. Let

k:(H(Y)NK)p = j(HkT) NK)

be the factor map. Note that k([id]p) = U and k [ (k + 1) is the identity, so [id]p =
UN(H(kT)NK)p =U. Therefore D witnesses that « is p-measurable in K. O

Remark 3.27. A somewhat similar argument can be used to show that if Player II has a
winning strategy in Gges(r, s + 2), then there is an inner model with a py-measurable
cardinal. We leave open the question of whether a winning strategy for Player II in the
game Gget(k, kT + 1) already implies an inner model with a py-measurable cardinal.

4. Questions

Question 4.1. What is the consistency strength of having t, > ™ for a regular cardinal
K> w?

Note that by Zapletal [33], this is at least o(x) = x* . In this paper, we show that
for a measurable cardinal », the consistency strength jumps above o(k) = k™.

Question 4.2. What is the exact consistency strength of the existence of a P,++-point on
an uncountable cardinal k?

Question 4.3. What is the consistency strength of Player II having a winning strategy in
the game Grijer (K, kT +1)7?

Note that there is an upper bound of o(k) = T 7.
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