Homework 8-Solutions
MATH 361 (due November 20) November 11, 2022

Problem 1. Prove that {X € P(N) | X is infinite} ~ P(N)
Solution. See HW7 Problem 4.

Problem 2. Determine the cardinality (No, oMo 2% , ...) of the following sets
(submit only 3 of the items):
We give crushed solutions, with the main ideas of all the function.

Of course you should have more details in your solutions.

(1) A= {f € N{Orl} | Vn € Nevenzf(n) = 1}-

Solution. |A| = 2%. Indeed, A C M{0,1} and therefore A < N{0,1}

_ N _ f(n) n €Ny
and the function F : "4 {0,1} — A definedby F(g)(n) =

1 1 € Negen
isinjective (check thatitis injective and well-defined!). Since Noaa {01} ~

N{0,1} we conclude that
0,1} <A
By CSB, A ~ {0,1}, 50 |A| = 280,
(2) B ={X € P(N) | X contains no consecutive numbers}.

Solution. P(Npe,) € B C P(N) hence |B| = 2%.

(3) Thesetof all arithmetic progressions of integers. [Recall: an arithmetic
progression of integers is a sequence (a,);;_, such that for some d, for

any n, difference a,41 —a, = d.]
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(4)

(5)

Solution. Let AP by the set of arithmetic progressions. Any arithmetic
progression is uniquely determined (namely, there is a one-to-one

function) by (ao, d). Hence
AP < N xN

. Show that AP is infinite and deduce that |[AP| = N,.

The set of all circles in the plain.[Given a point p = (x¢, yo) € R?

("the center") and r € (0, c0) ("the radious"), the circle C = C(p,r) =
{Ce,y) eR* | (x —x0)* + (y —yo)* = r*}. A]

Solution. A circle is uniquely determined by the center and the radius,
hence there is a bijection with R X R. It follows that there are 2%-many

such circles.

The set of all circles C in R? which intersect the x-axis at two points

<0/ q1>/ <O/ 5]2>, where q1,492 € Q

Solution. Two points on the circle determines at most two circles (solve
the equations!) hence the set is a countable union (over (41, 72) € Q)

of sets of size at most 2 hence countable. It follows that |C| = N,.

Problem 3. A straight line in the plain is a set of the following forms:

* L. ={c} xR for some c € R (lines which are parallel to the y-axis).

* Loy ={{x,y) € R|y =ax + Db} for some a,b € R. (lines which are

not parallel to the y-axis)

Answer the following questions:
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1. What is the cardinality of the set of all lines in the plain?

Solution. We need to compute the cardinality of £ = {L; | ¢ €
R}U{Lsp | a,b € R}. Clearly there is an injection from R to £ (for
example f(r) = L,). SoR < L. For the other direction, we can define

an onto function from R? to £ by
8({a,b,c)) =

Hence | £| = 2%

2. Prove that there is a line of the form L, ;, which contains no rational

point, namely LN Q x Q = 0.

Solution. L5, issuch aline, since if (x, y) € L5, theny = V2x and
if x is rational then y cannot be rational (otherwise V2 would have

been rational).

3. (A typo in the original formulation of the problem) Prove that every

line of the form L, for a > 0 contains an irrational point, namely

LNR\Q)x(R\Q) 0.

Solution. Just otherwise, for every (x,y) € L,}, wither x € Q or
y€Q SoL € AUB where A = {(g,ag+b) | g € Q} and B =
{(qa;b,a) | g € Q}. Both A, B are clearly countable and therefore

A U B is countable. It follows that L, j is countable, contradiction.

Problem 4. A function f : N — N is increasingly monotone, if for every #,

f(n) < f(n+1). Prove that the set A of all increasingly monotone functions

3
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f : N — N has cardinality 2%. [Hint: CSB. One direction is easy. For the
other, given a function f : N — N, define F(f)(n) = X;_, f(k).]

Solution. Let M be the set of monotone functions, then M C NN which we
saw in class has cardinality 2. For the other direction, for any function
f:N - N, F(f)(n) = X7, f(k). We claim that F : "N, — M is injective
and clearly, NN, has cardinality 2% in which case we will be done. To see
this, first note that

n+1

F()n+1)= D f(k)= Y fF)+ f(n+1) > > f(k) = F(f)(n)
k=0 k=0 k=0

Hence F(f) € M. To see it is one-to-one, suppose that F(f) = F(g). We
prove by induction that for every n, f(n) = g(n). Indeed, f(0) = F(f)(0) =
F(g)(0) = g(0). Suppose this holds up to 1, and let us prove that f(n +1) =

gn+1).

n+1 n+1

F@)n+1) =Y k) =F(f)n+1)= Y f(k)
k=0 k=0

Hence

) > 8k +gn+1)= > f(k)+f(n+1)
k=0 k=0

By the induction hypothesis };_, (k) = X;_, f(k), so we get that from (x)
that f(n +1) = g(n + 1).

Problem 5. Prove that N(()ZNO) = p(@%),

Solution.

2(2“0) <mon 882%) < (280)(2N0) — 2(?‘40-2“0) — 2(2“0)

By CBS we conclude the equiality.
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Problem 6. Prove that k7 = x" - x©.

Solution. I will just give the function. Suppose that |A| = «, |[B| = A and
|C| = 0, such that BN C = (. Define F : BYCA — BA x €A by

F(h)=(h T B,h T C)

1 Additional problems- preparation for midterm

IT

Problem 7. Compute the cardinality of the set of all function f : N —

{0,1} with no consecutive zeros. Namely, there is no n € N such that
f(n)=f(n+1)=0.

Problem 8. Consider the relation E om "N by fEg if and only if for every
n > 100, f(n) = g(n).

1. Prove that E is an equivalence relation.
2. Compute the cardinality of 'N/E.

Problem 9. Let <4, <p be two weak linear orderings of A, B (resp.), where
A, B are disjoint. We define <4 + <p which we abbreviate by <, on AB as

follows:
x<yyex,yeAAx<ay)V(x,ye BAx<py)V(x € AAy € B)
1. Prove that <, is a linear ordering of A U B.

2. Let N* = {0} x N and define <* on N* by (0, n) <* (0, m) if and only

if m < n. Prove that <* is a linear ordering of N*.
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3. Prove that (N*UN, <* + <) ~ (Z, <).

Problem 10. Define recursively Ag = 0 and A,+1 = P(A,). Prove by

induction that for every n, A, € A,41.

Problem 11. Prove that the intersection of finitely many Dedekind cuts is

a Dedekind cut.

Problem 12. Prove that if x € R and y € R is positive (namely 0 < y), then

x<x+y.



