(due Nov 12)

Problem 1. Prove that if $A \sim B$ and $B \sim C$ then $A \sim C$.

Problem 2. Prove the following items:

- 1. $\mathbb{N} \setminus \{2023, 2024\} \sim \mathbb{N}_{even}$.
- 2. $P(\mathbb{N}) \setminus \{\emptyset\} \sim P(\mathbb{N})$.
- 3. $(0,1) \sim (0,\infty)$.
- 4. $\mathbb{Z} \times [0,1) \sim \mathbb{R}$.

Homework 9		
MATH 300	(due Nov 12)	Nov 15, 2024
Problem 3 Prove th	at for every $\alpha < \beta$ real numbers ($(\alpha, \beta) \approx (0, 1)$ [Hint:

Problem 3. Prove that for every $\alpha < \beta$ real numbers $(\alpha, \beta) \approx (0, 1)$. [Hint: First stretch/shrink (0, 1) to have length $\beta - \alpha$, then shift it by +c as we did in class.]

Homework 9

MATH 300

(due Nov 12)

Problem 4. Show that $\mathbb{N}{0,1} \times \mathbb{N}{0,1} \approx \mathbb{N}{0,1}$.

[Hint: Use the interleaving function $F : (\mathbb{N}\{0,1\})^2 \to \mathbb{N}\{0,1\}$ defined by

$$F(\langle f, g \rangle)(n) = \begin{cases} f(\frac{n}{2}) & n \in \mathbb{N}_{even} \\ g(\frac{n-1}{2}) & n \in \mathbb{N}_{odd} \end{cases}$$

as the witnessing bijection.]