Homework 7-Sols

Problem 1. 1. $f_1 : \mathbb{R} \to codom(f_1)$, defined by $f_1(x) = \{x^2\}$. Compute $f_1(5)$.

- 2. $f_2: P(\mathbb{N}) \to codom(f_2)$, defined by $f_2(x) = \begin{cases} \min(x) & 4 \in x \\ x & else \end{cases}$.

 Compute $f_2(\mathbb{N}_{even})$ and $f_2(\{n \in \mathbb{N} \mid n^2 2n + 1 \le 9\})$.
- 3. $f_3: \mathbb{N} \times \mathbb{Z} \to codom(f_3)$, defined by $f_3(\langle n, m \rangle) = \{x \in \mathbb{N} \mid n < x < m\}$. Compute $f_3(\langle 1, 5 \rangle)$ and $f_3(\langle 1, -1 \rangle)$.

Solution.

1.
$$f_1(5) = \{5^2\} = \{25\}$$

- 2. $f_2(\mathbb{N}_{even}) = 0$ $f_2(\{n \in \mathbb{N} \mid n^2 2n + 1 \le 9\}) = 0$
- 3. $f_3(\langle 1, 5 \rangle) = \{2, 3, 4\}$ $f_3(\langle 1, -1 \rangle) = \emptyset$

Problem 2. For each of the functions from the previous exercise, find their domain and codomain.

Solution.

- 1. $dom(f_1) = \mathbb{R}$, $codom(f_1) = P(\mathbb{R})$
- 2. $dom(f_2) = P(\mathbb{N}), codom(f_2) = \mathbb{N} \cup P(\mathbb{N})$
- 3. $dom(f_3) = \mathbb{N} \times \mathbb{Z}$, $codom(f_3) = P(\mathbb{N})$

Problem 3. Define

$$f_1: \mathbb{N} \to \mathbb{N} \times \mathbb{N}, \ f_1(n) = \langle n+1, n+2 \rangle$$

$$f_2: \mathbb{N} \to \mathbb{N}, \ f_2(n) = n^2$$

$$f_3: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}, \ f_3(\langle n, m \rangle) = n - m$$

$$f_4: \mathbb{N} \to \mathbb{N}, \ f_4(n) = n + 1$$

Determine if the following compositions are defined and compute them:

- 1. $f_1 \circ f_2$ and $f_2 \circ f_1$.
- 2. $f_2 \circ f_2$. and $f_3 \circ f_3$
- 3. $f_4 \circ f_2$ and $f_2 \circ f_4$.
- 4. $f_3 \circ f_1 \circ f_2$ and $f_4 \circ f_3 \circ f_2$.

Solution.

- 1. $f_1 \circ f_2 : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$, $(f_1 \circ f_2)(n) = \langle n^2 + 1, n^2 + 2 \rangle$ $f_2 \circ f_1$ is undefined.
- 2. $f_2 \circ f_2 : \mathbb{N} \to \mathbb{N}$, $(f_2 \circ f_2)(n) = n^4$ $f_3 \circ f_3$ is undefined.
- 3. $f_4 \circ f_2 : \mathbb{N} \to \mathbb{N}, (f_4 \circ f_2)(n) = n^2 + 1$ $f_2 \circ f_4 : \mathbb{N} \to \mathbb{N}, (f_2 \circ f_4)(n) = (n+1)^2$
- 4. $f_3 \circ f_1 \circ f_2 : \mathbb{N} \to \mathbb{Z}$, $(f_3 \circ f_1 \circ f_2)(n) = -1$ $(f_4 \circ f_3 \circ f_2)(n)$ is undefined

Problem 4. For a function $f : A \rightarrow B$ and $C \subseteq A$ define the *pointwise image* of C by f as

$$f''C = \{f(c) \mid c \in C\}$$

(a) Prove that if $f: A \to B$ is a function and $C \subseteq A$, then

$$(f''A) \setminus (f''C) \subseteq f''[A \setminus C].$$

(b) Give an example of sets A, B and a function $f:A \to B$ and a subset $C \subseteq A$ such that

$$(f''A) \setminus (f''C) \neq f''[A \setminus C].$$

(c) Prove that if $f: A \to B$ is an injection and $C \subseteq A$, then

$$(f''A) \setminus (f''C) = f''[A \setminus C].$$

Solution.

- (a) Let $b \in f''A \setminus f''C$. Since $b \in f''A$, there is $a \in A$ such that b = f(a). Since $b \notin f''C$, $a \notin C$. It follows that $a \in A \setminus C$. We conclude that $b = f(a) \in f''[A \setminus C]$.
- (b) Let $f : \{1,2\} \to \{1,2\}$ defined by f(1) = f(2) = 1. Let $A = \{1,2\}$, and $C = \{1\}$. Then

$$f''\{1,2\} = \{1\}, \ f''\{1\} = \{1\} \Rightarrow f''\{1,2\} \setminus f''\{1\} = \emptyset$$

Also

$$\{1,2\}\setminus\{1\}=\{2\}\Rightarrow f''[\{1,2\}\setminus\{1\}]=\{1\}$$

Hence

$$f''\{1,2\} \setminus f''\{1\} = \neq \{1\} = f''[\{1,2\} \setminus \{1\}].$$

(c) Suppose that f is injective and we would like to prove that

$$(f''A) \setminus (f''C) = f''[A \setminus C].$$

By a double inclusion. In section (a) we proved \subseteq . For the other direction, let $x \in f''[A \setminus C]$. Then there is $a \in A \setminus C$ such that f(a) = x. By the definition of difference, we would like to prove that $x \in f''A$ and $x \notin f''C$. Since $a \in A$, it follows that $x = f(a) \in f''A$. Suppose towards a contradiction that there is $c \in C$ such that f(c) = x. Then f(c) = f(a). Since f is injective, c = a. However $c \in C$ and $c \notin C$, contradiction. Hence $c \in C$ such that $c \in C$ and $c \notin C$,