Problem 1. Apply each of the following claims to two specific examples of your choice or find a counterexample. In your solution, you should provide the examples and what you have concluded from the statements:

- a. Suppose that *n* is a integer, then 24 divides n(n + 1)(n + 2)(n + 3).
- b. Suppose that x, y, z are three integers such that $x^2 + y^2 = z^2$, then either 3 divides x or 3 divides y.

Solution. [a.] for example for n = 1, $1 \cdot 2 \cdot 3 = 6$ is divisible by 6 and therefore $1 \cdot 2 \cdot 3 \cdot 4$ is divisible by 24. also $2 \cdot 3 \cdot 4 = 24$ is divisible by 6 and therefore $2 \cdot 3 \cdot 4 \cdot 5$ is divisible by 24,

[b.] Counter example $5^2 + 12^2 = 13^2$ but 5, 12 are not divisible by 3.

Problem 2. Prove the following equivalences (using a double implication):

An integer is divisible by 4 if and only if its last two digits form a number divisible by 4.

[Hint: Decompose n = 100l + d where k, l is some integers and $0 \le d \le$ 99. Then the number d is the last two digits.]

Solution Let n = 100k + d where $0 \le d \le 99$. Let us prove this equivalence using a double implication

- → Suppose that *n* is divisible by 4. WTP *d* is divisible by 4. indeed, d = n - 100k, and since both *n* and 100k are divisible by 4, *n* is divisible by 4, by a theorem we saw in class that the difference of two numbers divisible by *m* is divisible by *m*.
- $\leftarrow \text{ Suppose that } d \text{ is divisible by 4 then } n = 100k + d \text{ is a sum of two}$ numbers divisible by 4, hence divisible by 4.

(due Feb 16)

Problem 3. Prove that if *a* and *b* are odd integers, then $a^2 - b^2$ is a multiple of 8.

Solution Suppose that *a*, *b* are odd. WTP that $a^2 - b^2$ is divisible by 8. By assumption, there are *k*, *l* integers such that a = 2k + 1 and b = 2l + 1. It follows that

$$a^2 - b^2 = (4k^2 + 4k + 1) - (4l^2 + 4l + 1) = 4(k^2 + k - (l^2 + l))$$

In class we proved that for every n, $n^2 + n$ is even and therefore $k^2 + k - (l^2 + l)$ is the difference if two even number hence even. Hence there is an integer r such that $k^2 + k - (l^2 + l) = 2r$ and therefore

$$a^{2} - b^{2} = 4(k^{2} + k - (l^{2} + l)) = 8r$$

Therefore $a^2 - b^2$ is divisible by 8.

Problem 4. Let *a*, *b*, *c* be integers. Prove that if $a^2 + b^2 = c^2$, then *abc* is even.

Solution. Let us prove the contrapositive. WTP $a^2 + b^2 = c^2$ Suppose that *abc* is odd. Then *a*, *b*, *c* must all be odd. But then a^2 , b^2 , c^2 . Now $a^2 + b^2$ is even as the sum of two odds. We conclude that $a^2 + b^2 \neq c^2$, since a number cannot be both even and odd.

Problem 5. (1) Prove that for every rational number $q \in \mathbb{Q}$ $q \neq 0$, $\sqrt{2} \cdot q$ is irrational.

Soltuion. Suppose towards contradiction that $\sqrt{2}q = p \in \mathbb{Q}$. Then $\sqrt{2} = \frac{p}{q}$. The ration of two rationals is rationals and therefore $\sqrt{2} \in \mathbb{Q}$, contradicting the theorem we saw in class.

(2) Prove or disprove: the sum or irrational numbers is irrational.

solution. Counterexample, $\sqrt{2} + (1 - \sqrt{2}) = 1$.

(3) Prove that $\sqrt{5}$ is irrational.

Soltuion. Like in WS4.

(4) (optional) Formulate a conjecture for the rationality and irrationality of real numbers of the form \sqrt{n} .

Solution For any natural number *n*, either \sqrt{n} is an integer or irrational.