MATH 250 (Instructor: Tom Benhamou) November 18, 2024 Instruction

The structure and instructions for Midterm III is identical to Midterm I.

Problems

Problem 1. Anwer the following questions. No explanation is required:

a. rank
$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 1 & 8 & 1 \end{pmatrix}$$
 = ______

b. There is a 6×4 matrix *A* with nullity(*A*) = 2 and rank(*A*) = 2

False \ True and give an example: _____

c.
$$\begin{bmatrix} 1\\2\\1 \end{bmatrix}$$
 is an eigenvector of $A = \begin{bmatrix} 1 & 1 & 1\\2 & 1 & 0\\0 & 1 & 2 \end{bmatrix}$. True \ False
d. $\left\{ \begin{bmatrix} x\\y+1\\z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$ is a subspace of \mathbb{R}^3 . True \ False

e. For any bases \mathcal{B}, C of a vector space V, the matrix $\underset{C \leftarrow \mathcal{B}}{P}$ is invertible. True \setminus False

counter example:

MATH 250 (Instructor: Tom Ber

(Instructor: Tom Benhamou) November 18, 2024

f. For any $m \times n$ -matrix A of rank k, erasing the last column results in a matrix of rank k - 1. True \setminus False

counter example:

MATH 250(Instructor: Tom Benhamou)November 18, 2024Problem 2. Suppose that $S : \mathbb{R}^3 \to \mathbb{R}^2$ is given by $S\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x - z \\ z - 2y - x \end{bmatrix}$.

Find bases for Ker(S) and Im(S).

Problem 3. Find all the eigenvalues of the matrix $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. For each eigenvalue of *A* present the eigenspace as the span of vectors.

Problem 4. Let $T : \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ be the map T(p) = p + p', where p' is the derivative of p. Is T an isomorphism?

Problem 5. Let *H* be the subspace of $M_{3\times 3}(\mathbb{C})$ consisting of all matrices *A* with $A_{11} + A_{22} + A_{33} = 0$.

- Prove that *H* is a subspace of *M*_{3×3}(ℂ).
- What is dim(*H*)?

Problem 6. Let $\mathcal{B} = \left\{ \begin{bmatrix} 1\\i\\1+i \end{bmatrix}, \begin{bmatrix} 1+i\\2\\-1-i \end{bmatrix}, \begin{bmatrix} 1+2i\\3-i\\-i \end{bmatrix} \right\}$, show that \mathcal{B} is a basis for \mathbb{C}^3 and compute $\begin{bmatrix} 2-i\\-1+3i\\1+2i \end{bmatrix} \mathcal{B}$.

Problem 7. Prove that if \bar{x} is an eigenvector for A, then \bar{x} is an eigenvector for A^2 .

Problem 8. Suppose that $\mathcal{B} = \{\bar{b}_1, \bar{b}_2, \bar{b}_3, \bar{b}_4\}$ is a basis for *V* and $C = \{\bar{b}_1 + \bar{b}_1, \bar{b}_1 + \bar{b}_2, \bar{b}_1 + \bar{b}_3, \bar{b}_1 + \bar{b}_4\}$. Show that *C* is also a basis for *V* and compute $\underset{\mathcal{B} \leftarrow C}{P}$.

3

MATH 250 (Instructor: Tom Benhamou) November 18, 2024 **Problem 9.** Let $\{\bar{v}_1, \bar{v}_2, \bar{v}_3\}$ and $\{\bar{u}_1, \bar{u}_2, \bar{u}_3\}$ be two LI sequences of vectors in *V*.

- (a) Is $\{\bar{v}_1, \bar{v}_2, \bar{v}_3, \bar{u}_1, \bar{u}_2, \bar{u}_3\}$ LI?
- (b) Show that if the only vector in $Sp(\{\bar{v}_1, \bar{v}_2, \bar{v}_3\})$ and in $Sp(\{\bar{u}_1, \bar{u}_2, \bar{u}_3\})$ is the zero vector then $\{\bar{v}_1, \bar{v}_2, \bar{v}_3, \bar{u}_1, \bar{u}_2, \bar{u}_3\}$ is LI.