MATH 250 (Instructor: Tom Benhamou) November 18, 2024 Instruction

The structure and instructions for Midterm III is identical to Midterm I.

Problems

Problem 1. Anwer the following questions. No explanation is required:

Introductory Linear Algebra-Midterm III Preparation questions H 250 (Instructor: Tom Benhamou) November 18, 2024

-	reputation questions	
MATH 250	(Instructor: Tom Benhamou)	November 18, 2024
e. For any bases ${\mathcal B}$	C, C of a vector space V , the mat	rix $P_{\mathcal{C}}$ is invertible.
<u>True</u> \ False		0~2
counter exampl	e:	

f. For any $m \times n$ -matrix A of rank k, erasing the last column results in a matrix of rank k - 1. True $\setminus \underline{False}$

	1	0	0	
counter example:	0	1	0	has rank 2 and if we erase the last column it still has rank 2.
	0	0	0	

MATH 250(Instructor: Tom Benhamou)November 18, 2024Problem 2. Suppose that $S : \mathbb{R}^3 \to \mathbb{R}^2$ is given by $S\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x - z \\ z - 2y - x \end{bmatrix}$.

Find bases for Ker(S) and Im(S).

Solution:

The standard matrix of *S* is $A = \begin{bmatrix} 1 & 0 & -1 \\ -1 & -2 & 1 \end{bmatrix}$ By a theorem we saw in class it suffices to find bases for null(A) = Ker(S) and Cols(A) = Im(S). We eliminate *A* to

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

So the pivot columns are 1,2 and therefore a basis for cols(A) = Im(S) is given by $\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \end{bmatrix} \right\}$. Also, the system of the reduces form is x - z = 0, y = 0

So a general element of null(A) has the form

$$\begin{bmatrix} z \\ y \\ z \end{bmatrix} = y \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

hence $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ form a basis for *null(A*).

Problem 3. Find all the eigenvalues of the matrix $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. For each eigenvalue of *A* present the eigenspace as the span of vectors.

MATH 250 (Instructor: Tom Benhamou) November 18, 2024 **Problem 4.** Let $T : \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ be the map T(p) = p + p', where p' is the derivative of p. Is T an isomorphism?

Problem 5. Let *H* be the subspace of $M_{3\times 3}(\mathbb{C})$ consisting of all matrices *A* with $A_{11} + A_{22} + A_{33} = 0$.

- Prove that *H* is a subspace of $M_{3\times 3}(\mathbb{C})$.
- What is dim(*H*)?

Problem 6. Let
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\i\\1+i \end{bmatrix}, \begin{bmatrix} 1+i\\2\\-1-i \end{bmatrix}, \begin{bmatrix} 1+2i\\3-i\\-i \end{bmatrix} \right\}$$
, show that \mathcal{B} is a basis for \mathbb{C}^3 and compute $\begin{bmatrix} 2-i\\-1+3i\\1+2i \end{bmatrix} \mathcal{B}$.

Problem 7. Prove that if \bar{x} is an eigenvector for A, then \bar{x} is an eigenvector for A^2 .

Proof. Suppose that \bar{x} is an eigen vector of A, then there is λ such that $A\bar{x} = \lambda \bar{x}$. It follows that

$$A^2 \bar{x} = A(A\bar{x}) = A(\lambda \bar{x}) = \lambda(A\bar{x}) = \lambda^2 \bar{x}$$

Hence \bar{x} is an eigenvector for A^2 for the eigenvalue λ^2 .

Problem 8. Suppose that $\mathcal{B} = \{\bar{b}_1, \bar{b}_2, \bar{b}_3, \bar{b}_4\}$ is a basis for *V* and $C = \{\bar{b}_1 + \bar{b}_1, \bar{b}_1 + \bar{b}_2, \bar{b}_1 + \bar{b}_3, \bar{b}_1 + \bar{b}_4\}$. Show that *C* is also a basis for *V* and compute $\underset{\mathcal{B} \leftarrow C}{P}$.

4

MATH 250(Instructor: Tom Benhamou)November 18, 2024*Proof.* The first part is a problem we did in class, let us reproduce thesolution. Since \mathcal{B} is a basis for V, dim(V) = 4 and since C has 4 vectors, bya theorem we saw in class it suffices to check that C is LI. Suppose that

$$x_1(\bar{b}_1 + \bar{b}_1) + x_2\bar{b}_1 + \bar{b}_2) + x_3(\bar{b}_1 + \bar{b}_3) + x_4(\bar{b}_1 + \bar{b}_4) = \bar{0}$$

We need to show that $x_1 = x_2 = x_3 = x_4 = 0$. Rearranging the above equations we get

$$(2x_1 + x_2 + x_3 + x_4)\bar{b}_1 + x_2\bar{b}_2 + x_3\bar{b}_3 + x_4\bar{b}_4 = \bar{0}$$

Since \mathcal{B} is LI, $2x_1 + x_2 + x_3 + x_4 = 0$, $x_2 = x_3 = x_4 = 0$. Hence $2x_1 = 0$ and therefore $x_1 = 0$.

For the second part,

$$P_{\mathcal{B}\leftarrow C} = \begin{bmatrix} | & | & | & | \\ [\bar{b}_1 + \bar{b}_1]_{\mathcal{B}} & [\bar{b}_1 + \bar{b}_2]_{\mathcal{B}} & [\bar{b}_1 + \bar{b}_3]_{\mathcal{B}} & [\bar{b}_1 + \bar{b}_4]_{\mathcal{B}} \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Problem 9. Let $\{\bar{v}_1, \bar{v}_2, \bar{v}_3\}$ and $\{\bar{u}_1, \bar{u}_2, \bar{u}_3\}$ be two LI sequences of vectors in *V*.

(a) Is $\{\bar{v}_1, \bar{v}_2, \bar{v}_3, \bar{u}_1, \bar{u}_2, \bar{u}_3\}$ LI? **Solution.** No for example $\{\begin{bmatrix}1\\0\\0\end{bmatrix}, \begin{bmatrix}0\\1\\0\end{bmatrix}, \begin{bmatrix}0\\0\\1\end{bmatrix}\}$ and $\{\begin{bmatrix}1\\0\\0\end{bmatrix}, \begin{bmatrix}0\\1\\0\end{bmatrix}, \begin{bmatrix}1\\1\\1\end{bmatrix}\}$ are both

LI but all of them together are not (since more than 3 vectors in \mathbb{R}^3 are linearly dependent.)

MATH 250 (Instructor: Tom Benhamou) November 18, 2024

(b) Show that if the only vector in $Sp(\{\bar{v}_1, \bar{v}_2, \bar{v}_3\})$ and in $Sp(\{\bar{u}_1, \bar{u}_2, \bar{u}_3\})$ is the zero vector then $\{\bar{v}_1, \bar{v}_2, \bar{v}_3, \bar{u}_1, \bar{u}_2, \bar{u}_3\}$ is LI.

Proof. Let $x_1\bar{v}_1 + x_2\bar{v}_2 + x_3\bar{v}_3 + y_1\bar{u}_1 + y_2\bar{u}_2 + y_3\bar{u}_3 = 0$ we need to show that $x_1 = x_2 = x_3 = y_1 = y_2 = y_3 = 0$. We have that

$$\bar{w} = x_1\bar{v}_1 + x_2\bar{v}_2 + x_3\bar{v}_3 = -y_1\bar{u}_1 - y_2\bar{u}_2 - y_3\bar{u}_3$$

Hence \bar{w} is a linear combination of both sequences which implies that \bar{w} is in both $Sp(\{\bar{v}_1, \bar{v}_2, \bar{v}_3\})$ and in $Sp(\{\bar{u}_1, \bar{u}_2, \bar{u}_3\})$. By our assumption, this means that $\bar{w} = 0$, so

$$\bar{w} = x_1 \bar{v}_1 + x_2 \bar{v}_2 + x_3 \bar{v}_3 = -y_1 \bar{u}_1 - y_2 \bar{u}_2 - y_3 \bar{u}_3 = 0$$

Since $\{\bar{v}_1, \bar{v}_2, \bar{v}_3\}$ and $\{\bar{u}_1, \bar{u}_2, \bar{u}_3\}$ are LI, then $x_1 = x_2 = x_3 = 0$ and $-y_1 = -y_2 = -y_3 = 0$ which implies $y_1 = y_2 = y_3 = 0$.