
Math 250- Introductory Linear Algebra
Class notes

Tom Benhamou

Solutions of Linear Systems and Echlon Form

0.1 Systems of Linear Equations
Definition. • A Linear Equation in the variable 𝑥1, ..., 𝑥𝑛 is an equation

that can be written in the form:

𝑎1𝑥1 + 𝑎2𝑥2 + ... + 𝑎𝑛𝑥𝑛 = 𝑏

where 𝑏, and the coefficients 𝑎1, ..., 𝑎𝑛 , 𝑏 are either real or complex
numbers. 𝑛 may be any positive integer.

• A Linear System in the variables 𝑥1, ..., 𝑥𝑛 is a list of one or more linear
equations in the same variables 𝑥1, ..., 𝑥𝑛 .

• A solution to a linear system in the variables 𝑥1, ..., 𝑥𝑛 is a list (𝑠1, ..., 𝑠𝑛)
of numbers, such that when the values 𝑠1, .., 𝑠𝑛 are substituted for
𝑥1, ..., 𝑥𝑛 , then equality holds in all the equations.

• The solution set of the system is the set of all possible solutions.

• Two linear systems are called equivalent if they have the same set of
solutions.

Remark. Given any linear equations, we can always add variables or
changes the variable names so that the equations are in the same vari-
ables.

Fact 1. A linear system of equations either have 0, 1 of∞many solutions.
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A system with at least one solution is called consistent, and if it has no
solutions then it is called inconsistent. To determined how many solutions
does a linear system has, we will usually ask the two following questions
regarding existence and uniqueness:

Question 1. (1) Is the consistent? namely, does at least one solution exists?
(either 1 or∞many solutions)

(2) If a solution exists, is it the only one? namely is the solution unique?
(either 0 or 1 solutions)

Definition. An 𝑚 × 𝑛 matrix is a rectangle of numbers, with 𝑚 rows and 𝑛

columns. (The number of rows always comes first)

Given a linear system

𝑎1,1𝑥1 + ....𝑎1,𝑛𝑥𝑛 = 𝑏1

𝑎2,1𝑥1 + ....𝑎2,𝑛𝑥𝑛 = 𝑏2

...

𝑎𝑚,1𝑥1 + ....𝑎𝑚,𝑛𝑥𝑛 = 𝑏𝑚

The coefficient matrix of the sustem is defined as:

©«
𝑎1,1 ... 𝑎1,𝑛
𝑎2,1 ... 𝑎2,𝑛
...

. . .
...

𝑎𝑚,1 ... 𝑎𝑚,𝑛

ª®®®¬
The augmented matrix of the system is defined as:

©«
𝑎1,1 ... 𝑎1,𝑛 𝑏1
𝑎2,1 ... 𝑎2,𝑛 𝑏2
...

. . .
... ∗ ...

𝑎𝑚,1 ... 𝑎𝑚,𝑛 𝑏𝑚

ª®®®¬
Remark. Note that the rows always correspond to equations while the
columns correspond to variables.

Definition. The three basic Row/Equation operations are:
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(1) (Replacement) Replace one row by the sum of that of itself and a
multiple of another row. ("Add to row 𝑖 the 𝑗 row multiplied by 𝛼")

(2) (Interchange) Interchange two rows.

(3) (Scaling) Multiply all entries in a row by a nonzero constant.

Two matrices are called row equivalent if there is a (finite) sequence of
elementary operations which leads from one matrix to the other.

Remark. Row operation are reversible in the sense that every row operation
can be canceled by a (possibly) other operation:

(1) Interchange back the same rows.

(2) If we multiplies by the (nonzero) constant 𝑐, then we can multiply by
1
𝑐 .

(3) If we added the 𝑗th row multiplied by 𝛼 to the 𝑖th row, then we can add
the 𝑗th row multiplied by −𝛼 to the 𝑖th row.

Theorem. If two augmented matrices of two linear systems are row equiv-
alent, then the two systems are equivalent, that is, they have the same
solution set.

Proof. Checking one by one each operation, we see that if (𝑠1, ...𝑠𝑛) is a
solution to the first system, then any of the basic operations will not change
this fact. For example, if 𝑎𝑖 ,1𝑠1 + ....𝑎𝑖 ,𝑛𝑠𝑛 = 𝑏𝑖 and 𝑎 𝑗 ,1𝑠1 + .... + 𝑎 𝑗 ,𝑛𝑠𝑛 = 𝑏 𝑗 ,
and we add the 𝑗-th row multiplied by 𝛼 to row 𝑖, then 𝑠1, ..., 𝑠𝑛 is still a
solution since

(𝑎𝑖 ,1 + 𝛼𝑎 𝑗 ,1)𝑠1 + ....(𝑎𝑖 ,𝑛 + 𝛼𝑎 𝑗 ,𝑛)𝑠𝑛 = 𝑏𝑖 + 𝛼𝑏 𝑗 .

Since every operation is reversible, then the same argument shows that
if (𝑠1, ..., 𝑠𝑛) is a solution to the second system, it is a solution to the first.

□

0.2 Row Reduction and Echelon Form
Definition. A leading entry in a row (equation) is the first nonzero entry
(the first variable that appears).
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Definition (echalon form). A rectangular matrix is in echalon form if it has
the following three properties:

(1) All zero rows are at the bottom.

(2) Each leading entry in a nonzero row is in a column strictly to the right
to the column of the leading entry in the row above it. In particular,
all the entries in a column below a leading entry are 0.

It is moreover called reduced echalon form if:

(3) all the leading entries are 1.

(4) each leading 1 is the only nonzero entry in its column.

Theorem. Each matrix is row equivalent to one and only one reduced
echalon matrix

Remark. Teh echalon form is convenient to deduce how many solution are
there and the reduced echalon form is good to represent solutions

Solutions of linear system

(1) A pivot column is a column in the echlon form where there is a leading
entry.

(2) Each variable corresponding to a pivot column is called a basic variable.

(3) The other variables are called free variables.

That means that choosing any value for the free variables determines
uniquely the basic variables and yield a solution.

This gives a description of the solution set in parametric representation.

Theorem. A linear system is consistent if and only if the right-most columns
of any echlon form of the augmented matrix is not a pivot row. Namely,
there is not a "contradictory line".

If a linear system is consistent, then there is a unique solution if and
only if there are no free variables.

4



1 Vectore in R𝑛

1.1 The palne R2

A verctor in R2 is a pair �̄� =

(
𝑢1
𝑢2

)
where 𝑢1, 𝑢2 are real numbers. R2 =

{
(
𝑢1
𝑢2

)
| 𝑢1, 𝑢2 ∈ R}

Remark. R2 can be identified with the plane.

Remark. We add the bar in ‘�̄�’ to remind ourselves that the variable rep-
resents a vector (rather than a number)

Vector Equality:
(
𝑎

𝑏

)
=

(
𝑐

𝑑

)
iff 𝑎 = 𝑐 and 𝑏 = 𝑑.

Vector addition:
(
𝑎

𝑏

)
+
(
𝑐

𝑑

)
=

(
𝑎 + 𝑐

𝑏 + 𝑑

)
Remark. Vector addition corresponds geometrically to the parallelogram
rule.

Multiplication by scalar: A scalar is just a number in R. For a scalar 𝛼

we define: 𝛼 ·
(
𝑎

𝑏

)
=

(
𝛼 · 𝑎
𝛼 · 𝑏

)
.

Remark. scalar multiplication corresponds geometrically to:

(1) If 𝛼 > 1- stratch.

(2) If 0 < 𝛼 < 1- shrink.

(3) If 𝛼 < 0- reverse direction.

We identify
(
𝑎

𝑏

)
with a 2 × 1-matrix and

(
𝑎 𝑏

)
with 1 × 2 matrix.
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1.2 Vectors in R𝑛

Similarily we can idemtify R3 with the space.

Definition. 𝑛-tuples are 𝑛 × 1-matrices �̄� =

©«
𝑢1
𝑢2
...

𝑢𝑛

ª®®®¬ R
𝑛 = {

©«
𝑢1
𝑢2
...

𝑢𝑛

ª®®®¬ | 𝑢1, ..., 𝑢𝑛 ∈

R}=the set of all possible 𝑛-tuples.

Remark. For 𝑛 = 3 R3 can be idetified eith the space. For 𝑛 > 3 the is no
(clear) geometry associated.

Definition. 0̄ =

©«
0
0
...

0

ª®®®¬
Addition:

©«
𝑢1
𝑢2
...

𝑢𝑛

ª®®®¬ +
©«
𝑣1
𝑣2
...

𝑣𝑛

ª®®®¬ =
©«
𝑢1 + 𝑣1

𝑢2
...

𝑢𝑛 + 𝑣𝑛

ª®®®¬.
Multiplicationby scalars: 𝛼 ·

©«
𝑢1
𝑢2
...

𝑢𝑛

ª®®®¬ =
©«
𝛼𝑢1
𝛼𝑢2
...

𝛼𝑢𝑛

ª®®®¬.
Claim. For all �̄� , �̄� , �̄� ∈ R𝑛 and all 𝛼, 𝛽 scalars we have

(i) �̄� + �̄� = �̄� + �̄�.

(ii) �̄� + (�̄� + �̄�) = (�̄� + �̄�) + �̄�.

(iii) �̄� + 0̄ = �̄�.

(iv) �̄� + (−�̄�) = 0̄.

(v) 𝛼 · (�̄� + �̄�) = 𝛼 · �̄� + 𝛼 · �̄�.

(vi) (𝛼 + 𝛽) · �̄� = 𝛼 · �̄� + 𝛽 · �̄�.

(vii) 𝛼 · (𝛽 · �̄�) = (𝛼𝛽) · �̄�.
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(viii) 1 · �̄� = �̄�.

(ix) 0 · �̄� = 0̄.

Definition. A linear combination of �̄�1, ..., �̄�𝑛 is a vector �̄� ∈ R𝑛 that can be
written as

𝑦 = 𝑐1�̄�1 + ... + 𝑐𝑛 �̄�𝑛 =

𝑛∑
𝑖=1

𝑐𝑖 �̄�𝑖 .

Vector equation A vector equation is an equation of the form

𝑥1�̄�1 + ...𝑥𝑛 �̄�𝑛 = 𝑏.

Theorem. The vector equation 𝑥1�̄�1 + ...𝑥𝑛 �̄�𝑛 = 𝑏. has exactly the same
solutions as the augmented matrix

©«
| | |
�̄�1 . . . �̄�𝑛 𝑏

| | |
ª®¬

Definition. Given vectors �̄�1, ..., �̄�𝑛 ∈ R𝑛 , define Span{�̄�1, ..., �̄�𝑛} as the set
of all linear combinations of �̄�1, ..., �̄�𝑛 .

Remark. 𝑏 ∈ Span{�̄�1, ..., �̄�𝑛} iff 𝑥1�̄�1 + ...𝑥𝑛 �̄�𝑛 = 𝑏 has a solution iff

©«
| | |
�̄�1 . . . �̄�𝑛 𝑏

| | |
ª®¬

has a solution.

2 The Matrix Equation 𝐴𝑥 = 𝑏.
Compactifying our notations even more, we write the vector equation

𝑥1�̄�1 + ...𝑥𝑛 �̄�𝑛 = 𝑏

in matrix form as

©«
| |
�̄�1 . . . �̄�𝑛
| |

ª®¬ ·
©«
𝑥1
𝑥2
...

𝑥𝑛

ª®®®¬ = 𝑏
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Definition. An equation of the form 𝐴 · �̄� denoted the linear combinations
of the columns of 𝐴 with weights �̄�.

Theorem. Let 𝐴 be an 𝑀 × 𝑛-matrix with columns �̄�1, ..., �̄�𝑛 and 𝑏 ∈ R𝑚 .
The following have the same solutions:

(1) The matrix equation: 𝐴�̄� = 𝑏.

(2) the vector equation 𝑥1 �̄�1 + ... + 𝑥𝑛 �̄�𝑛 = 𝑏.

(3) The linear system whose augmented matrix is:

©«
| | |
�̄�1 . . . �̄�𝑛 𝑏

| | |
ª®¬

2.1 Existence of solutions
Corollary. The following are eequivalent:

(1) 𝑏 ∈ Span(�̄�1, .., �̄�𝑛).

(2) 𝐴�̄� = 𝑏 has a solution.

Corollary. The following are equivalent

(1) The columns of 𝐴 span R𝑚 .

(2) for every 𝑏, 𝐴𝑥 = 𝑏 is consistent.

(3) In the Echlon form of 𝐴, every row has a leading entry.

Corollary. If 𝑛 < 𝑚, then no 𝑛-vectors in R𝑚 can span R𝑚 .

Matric-vector product:

Definition. (𝐴 · �̄�)𝑖 = (𝐴)𝑖 ,1𝑥1 + ...(𝐴)𝑖 ,𝑛𝑥𝑛 .

Theorem. (1) 𝐴(�̄� + �̄�) = 𝐴�̄� + 𝐴�̄�.

(2) 𝐴(𝛼�̄�) = 𝛼(𝐴�̄�).

(3) 𝐴(∑𝑛
𝑖=1 𝛼𝑖 �̄�𝑖) =

∑𝑛
𝑖=1 𝛼𝑖 · (𝐴�̄�𝑖).
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2.2 Homogeneous Linear Systems
Definition. A linear system is said to be homogeneous if it can be written
in the form 𝐴�̄� = 0̄. In other words if it is equivalent to the form:

𝑎1,1𝑥1 + ....𝑎1,𝑛𝑥𝑛 = 0

𝑎2,1𝑥1 + ....𝑎2,𝑛𝑥𝑛 = 0

...

𝑎𝑚,1𝑥1 + ....𝑎𝑚,𝑛𝑥𝑛 = 0

Proposition. (1) An homogeneous system always has a solution.

(2) The set of solutions of a linear system can always be written as a span.

If the set of solutions of 𝐴𝑥 = 0 is Span(�̄�1, ..., �̄�𝑘), then the general
solution or parametric vector form of the solution is

�̄� = 𝑡1�̄�1 + ... + 𝑡𝑘 �̄�𝑘

2.3 Solution to non-homogeneous systems
Definition. If 𝐴𝑥 = 𝑏 is a non homogeneous linear equation, the corre-
sponding homogeneous system is 𝐴𝑥 = 0.

Any specific solution to 𝐴𝑥 = 𝑏 is called a private solution.

Theorem. Suppose that 𝐴𝑋 = 𝑏 is a consistent linear system. Then the
general solution for 𝐴𝑥 = 𝑏, has the form:

�̄� = �̄� + �̄�ℎ

where 𝑝 is any fixed private solution for 𝐴𝑥 = 𝑏 and �̄�ℎ is the general
solution for the corresponding homogeneous system 𝐴𝑥 = 0.

Corollary. If 𝐴𝑥 = 𝑏 is consistent then 𝐴𝑥 = 𝑏 has the same number of
solutions as 𝐴𝑥 = 0.
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3 Linear Independence
Definition. A sequence of vectors {�̄�1, ...�̄�𝑛} ⊆ R𝑚 is called linearly inde-
pendent(LI) if the vector equation

(★) 𝑥1�̄�1 + ...𝑥𝑛 �̄�𝑛 = 0

has only the trivial solution. It is called linearly dependent (LD) otherwise,
that is, if there are coeficients 𝛼1, .., 𝛼𝑛 , not all 0, such that

(∗)𝛼1�̄�1 + ... + 𝛼𝑛 �̄�𝑛 = 0

Any solution to (★) (including the trivial one) is called a linear depen-
dence of {�̄�1, ...�̄�𝑛}.

Remark. Note that 0̄ cannot be a part of a linearly independent sequence
since we can always put a non-zero coefficient to it to produce a non-zero
linear dependence.

Claim. A single non-zero vector is linearly independence.

Corollary. TFAE:

(1) the sequence {�̄�1, ...�̄�𝑛} is linearly independent.

(2) 𝑥1�̄�1 + ...𝑥𝑛 �̄�𝑛 = 0 has a unique solution.

(3) In (any) reduced form of 𝐴, evey column has a leading entry, where

©«
| |
�̄�1 . . . �̄�𝑛
| |

ª®¬
Corollary. more than 𝑚 vectors in R𝑚 are LD.

This is not very useful in abstract settings (but very useful for specific
examples). To prove that a sequence of vector {�̄�1, ...�̄�𝑛}, you can use the
following: "Suppose that 𝛼1�̄�1 + ... + 𝛼𝑛 �̄�𝑛 = 0, let us prove that 𝛼1 = 𝛼2 =

...− = 𝛼𝑛 = 0.
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Example 1. Show that if {�̄�1, ...�̄�𝑛} is linearly independent, then also

{�̄�1 + �̄�1, ...�̄�𝑛 + �̄�1}

is linearly independent.

Proof. Suppose that

(∗) 𝛼1(�̄�1 + �̄�1) + ... + 𝛼𝑛(�̄�𝑛 + �̄�1) = 0

we want to prove that 𝛼1 = ... = 𝛼𝑛 = 0. rearranging (∗)we have

(2𝛼1 + 𝛼2 + ... + 𝛼𝑛)�̄�1 + 𝛼2�̄�2 + ... + 𝛼𝑛 �̄�𝑛 = 0

By our assumption, �̄�1, ...�̄�𝑛 are linearly independent, and therefore

2𝛼1 + 𝛼2 + ... + 𝛼𝑛 = 0

𝛼2 = 𝛼3 = ... = 𝛼𝑛 = 0
Thenrefore 2𝛼1 = 0 and thus 𝛼1 = 0. □

Proposition. Let �̄�1, �̄�2 be any two vectors, then {�̄�1, �̄�2} is linearly inde-
pendent iff nither of them is a scalar multiplicity of the other. For example,
in R2 and R3, this means that they do not lay on the same line.

Proof. If �̄�1 = 𝛼 · �̄�2 for example, then (1,−𝛼) is a non-zero linear depen-
dence, sop the vectors are LD. If (𝛼, 𝛽) is a non-zero lineare dependence,
then 𝛼�̄�1 + 𝛽�̄�2 = 0, suppose for example that 𝛼 ≠ 0, then �̄�1 =

𝛽
𝛼 �̄�2. □

In general we have the following (which is not very convenient in prac-
tice but good for the intuition):

Theorem. TFAE:

(1) A sequence {�̄�1, ..., �̄�𝑛} is LD.

(2) �̄�1 = 0̄ or there is 1 < 𝑗 ≤ 𝑛 such that �̄� 𝑗 ∈ Span(�̄�1, ..., �̄� 𝑗−1) (i.e. �̄� 𝑗 is a
linear combination of the previous ones.).

(3) There is 1 ≤ 𝑗 ≤ 𝑛 such that �̄� 𝑗 ∈ Span(�̄�1, ..., �̄� 𝑗−1, �̄� 𝑗+1, ..., �̄�𝑛).

Problem 1. Prove that �̄�1, ..., �̄�𝑛 is LI if and only if every 𝑏 ∈ Span(�̄�1, ..., �̄�𝑛)
can be represented uniquely as a linear combination of �̄�1, ..., �̄�𝑛 .
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Definition. A sequenc of vector �̄�1, ..., �̄�𝑛 is called a base for R𝑚 if it is
spanning and LI.

Corollary. �̄�1, ..., �̄�𝑛 is a base forR𝑚 iff every ®𝑏 ∈ R𝑚 can be written uniquely
as a linear combination of �̄�1, ..., �̄�𝑛 .

Corollary. Any base of R𝑚 consisted of exactly 𝑚 vectors.

4 Linear Transformations
Definition. A transformation/function/mapping from R𝑛 to R𝑚 is an as-
sigment 𝑓 , such that:

1. 𝑓 assigns to every 𝑎 ∈ 𝐴, an element 𝑏 ∈ 𝐵.

2. the element 𝑏 ∈ 𝐵 which is assigned to 𝑎 ∈ 𝐴, is uniquely determined
by 𝑎 and is denoted by 𝑓 (𝑎).

We denote it we 𝑓 : R𝑛 → R𝑚 . R𝑛 is the domain f the function 𝑓 which
is denoted by dom( 𝑓 ) and R𝑚 is the co-domain of the function 𝑓 which we
denote by codom( 𝑓 ).

Further notations: 𝑓 (𝑎) is called the image if 𝑎 under 𝑓 and if 𝑏 = 𝑓 (𝑎)
then 𝑎 is call a preimage of 𝑏. The image/range of 𝑓 is the set of all elements
in 𝐵 which are images of elements of 𝐴 under 𝑓 . Namely ran( 𝑓 ) = { 𝑓 (𝑎) |
𝑎 ∈ 𝐴}.

Example 2. (1) Given an 𝑚 × 𝑛 matrix 𝐴, we define the matrix tranforma-
tion, 𝑇𝐴 : R𝑛 → R𝑚 defined by 𝑇𝐴(�̄�) = 𝐴 · �̄�. For example if

𝐵 =

(
1 2 0
1 1 −1

)
Then 𝑇𝐵 : R3→ R2.

𝑇𝐵(©«
1
0
1

ª®¬) =
(
1 2 0
1 1 −1

)
· ©«

1
0
1

ª®¬ =
(
1
0

)
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dom(𝑇𝐵) = R3, codom( 𝑓 ) = R2. The vector
(
1
0

)
is the image of ©«

1
0
1

ª®¬ under

𝑇𝐵. At this point it is not clear what is the range of 𝑇𝐵, but we will see later
that it is R2.

Example 1 p.68

Recall that the identity matrix is defined by 𝐼3 =
©«
1 0 0
0 1 0
0 0 1

ª®¬. Then𝑇𝐼3 is what

we call the identity map.

Definition. A transformation 𝑓 : R𝑛 → R𝑚 is called linear if for every
�̄� , �̄� ∈ R𝑛 and 𝛼 ∈ R:

(1) 𝑓 (�̄� + �̄�) = 𝑓 (�̄�) + 𝑓 (�̄�).

(2) 𝑓 (𝛼 · �̄�) = 𝛼 · 𝑓 (�̄�)

Example 3. [Exmaple 4 p.71] Let 𝑟 ∈ R be a scalar. Define 𝑓𝑟 : R𝑛 → R𝑛

be the function 𝑓𝑟(�̄�) = 𝑟 · �̄�.

Example 5

Corollary. If 𝑇 is a linear transformation then 𝑇(0̄) = 0̄

Proof. 𝑇(0̄) = 𝑇(0 · �̄�) = 0𝑇(�̄�) = 0̄. □

Example 4. The above corollary is a simple way to rule out certain function
from being linear. For example 𝑓 (𝑥) = 𝑥 + 1 is not linear since 𝑓 (0) ≠ 0.

Corollary. If 𝑇 : R𝑛 → R𝑚 is a linear transformation, then 𝑇 moves a linear
combination to a linear combination. Formally, for every �̄�1, ..., �̄�𝑘 ∈]R𝑛 ,
and any 𝛼1, ..., 𝛼𝑘 ∈ R scalars, 𝑓 (∑𝑘

𝑖=1 𝛼𝑖 �̄�𝑖) =
∑𝑘

𝑖=1 𝛼𝑖 𝑓 (�̄�𝑖); that is:

𝑓 (𝛼1�̄�1 + ...𝛼𝑘 �̄�𝑘) = 𝛼1 𝑓 (�̄�1) + 𝛼2 𝑓 (�̄�2) + ... + 𝛼𝑘 𝑓 (�̄�𝑘)

Proof. Do it for 2, and the general case is clear. □
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4.1 The matrix of a linear transformation

We denote the unit vectors by 𝑒𝑖 =

©«

0
0
...

1
...

0
0

ª®®®®®®®®®®¬
← 𝑖th place. Note that the identity

matrix 𝐼𝑛 =
©«𝑒1 ... 𝑒𝑛

ª®¬. Hence for every vector �̄� =

©«
𝑣1
𝑣2
...

𝑣𝑛

ª®®®¬ we have �̄� =

𝐼𝑛 �̄� = 𝑣1𝑒1 + ... + 𝑣𝑛 �̄�𝑛 (by the definition of multiplication 𝐴�̄� as the linear
combinations of the columns).

Theorem. Every matrix transformation 𝑇𝐴 is linear. Moreover 𝑇𝐴(𝑒𝑖) =
𝐶𝑖(𝐴), where 𝐶𝑖(𝐴) is the 𝑖th-column of 𝐴.

Proof. For linearity, use the properties we proved regarding he product𝐴·�̄�.
To see that 𝑇𝐴(𝑒𝑖) = 𝐶𝑖(𝐴), recall that by the definition of multiplication
𝐴 · �̄� as a linear combination of the columns we have:

𝑇𝐴(𝑒𝑖) = 𝐴 · 𝑒𝑖 = 0 · 𝐶1(𝐴) + 0 · 𝐶2(𝐴) + ... + 1 · 𝐶𝑖(𝐴) + ... + 0 · 𝐶𝑛(𝐴) = 𝐶𝑖(𝐴)

□

Theorem. Every linear map 𝑇 : R𝑛 → R𝑚 is a matrix transformation.
Namely, there is a unique 𝑚 × 𝑛 matrix 𝐴 such that 𝑇 = 𝑇𝐴 (hence 𝐶𝑖(𝐴) =
𝑇(𝑒𝑖))

Proof. Let

𝐴 =
©«
| ... |

𝑇(𝑒1) ... 𝑇(𝑒𝑛)
| ... |

ª®¬
Note that since dom(𝑇) = R𝑛 , there are 𝑛 unit vectors 𝑒1, .., 𝑒𝑛 to plug in 𝑇.
Since codom(T) = R𝑚 , the matrix 𝐴 is an 𝑚 × 𝑛 matrix. To see that 𝑇 = 𝑇𝐴

14



we will show that for every vector �̄�, 𝑇(�̄�) = 𝐴 · �̄� = 𝑇𝐴(�̄�). To see this, note
that

�̄� =

©«
𝑣1
𝑣2
...

𝑣𝑛

ª®®®¬ = 𝑣1 · 𝑒1 + 𝑣2𝑒2 + ... + 𝑣𝑛𝑒𝑛

For example ©«
2
4
−1

ª®¬ = 2 · ©«
1
0
0

ª®¬ + 4 · ©«
0
1
0

ª®¬ + (−1) · ©«
0
0
1

ª®¬
Since 𝑇 is linear it preserves linear combinations and therefore:

𝑇(�̄�) = 𝑇(𝑣1 · 𝑒1 + 𝑣2𝑒2 + ... + 𝑣𝑛𝑒𝑛) = 𝑣1 · 𝑇(𝑒1) + 𝑣2𝑇(𝑒2) + ... + 𝑣𝑛𝑇(𝑒𝑛) =

=
©«
| ... |

𝑇(𝑒1) ... 𝑇(𝑒𝑛)
| ... |

ª®¬ ·
©«
𝑣1
𝑣2
...

𝑣𝑛

ª®®®¬ = 𝐴 · �̄�

□

The matrix 𝐴 is called the standard matrix for the linear transformation 𝑇.

Example 5. Define 𝑇 : R2 → R3 by 𝑇(
(
𝑥
𝑦

)
) = ©«

𝑥 + 2𝑦
𝑥 − 2𝑦
2𝑦 + 3𝑥

ª®¬. Show that 𝑇 is

linear and find the standard matrix for the linear transformation 𝑇.

Example 6. Define 𝑇𝜋
2

: R2→ R2, the rotation matrix by 𝜋
2 -radian (90o).

It is not hard to see geometrically that 𝑇𝜋
2

is linear. Hence by the above
theorem it is suppose to be a matrix transformation 𝑇𝐴. To find the matrix

𝐴 we need to compute𝑇𝜋
2
(
(1
0
)
) =

(0
1
)

and𝑇𝜋
2
(
(0
1
)
) =

(−1
0
)
. Hence 𝐴 =

(
0 −1
1 0

)
.

The general formula for rotation matrix by 𝜃-radians is:(
cos(𝜃) − sin(𝜃)
sin(𝜃) 𝑐𝑜𝑠(𝜃)

)
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4.2 surjective and injective transformations
Definition. A transformation 𝑇 : R𝑛 → R𝑚 is called onto/surjective if
any 𝑏 ∈ R𝑚 is the image of some �̄� ∈ R𝑛 under 𝑓 . Namely, 𝑓 (�̄�) = 𝑏.
Equivalently, if ran( 𝑓 ) = R𝑚 .

Problem 2. Formulate what does it mean that 𝑇 is not onto.

Problem 3. Prove that in general ran(𝑇) = Span(𝑇(𝑒1), ..., 𝑇(𝑒𝑛)).

Definition. A mapping 𝑇 : R𝑛 → R𝑚 is called one-to-one/injective if for
each 𝑏 ∈ R𝑚 there is at most one �̄� ∈ R𝑛 such that 𝑇(�̄�) = 𝑏. In other words,
if �̄� ≠ �̄�′ then 𝑇(�̄�) ≠ 𝑇(�̄�′).

Example 7 (Exmple 4 p. 81).

Theorem. Let 𝐹 : R𝑛 → R𝑚 , and let 𝐴 be the standard matrix of 𝑇. TFAE:

(1) 𝑇 is onto.

(2) For every 𝑏 ∈ R𝑚 , the equation 𝐴�̄� = 𝑏 has a solution.

(3) The columns of 𝐴 span R𝑚 .

Proof. (2) and (3) are equivalent from previous theorems regarding span-
ning sequences (Theorem 4 p.39 of the textbook).

To that (1) is equivalent to (2), given any 𝑏 ∈ R𝑚 , since 𝑇𝐴 = 𝑇, we have
that, for any �̄� ∈ R𝑛 , 𝑇(�̄�) = 𝑇𝐴(�̄�) = 𝐴 · �̄�, hence �̄� is a solution to 𝐴�̄� = 𝑏

iff 𝑇(�̄�) = 𝑏. That means that for every 𝑏 𝐴�̄� = 𝑏 has a solution iff for every
𝑏 there is �̄� such that 𝑇(�̄�) = 𝑏, namely, 𝑇 is onto.

For (2) implies (1), □

Theorem. 𝑇 is one-to-one the only �̄� ∈ R𝑛 such that 𝑇(�̄�) = 0̄ is �̄� = 0̄ (i.e.
𝑇(�̄�) = 0̄ has only the trivial solution).

Proof. If 𝑇 is one-to-one, and supposed that 𝑇(�̄�) = 0̄. Then �̄� = 0̄ since if
�̄� ≠ 0̄, then𝑇(�̄�) = 0̄ = 𝑇(0̄), which is in contradiction to𝑇 being one-to-one.
In the other direction, suppose that the only solution to 𝑇(�̄�) = 0̄ is �̄� = 0̄,
and let us prove that 𝑇 is one-to-one. Suppose that 𝑇(�̄�) = 𝑇(�̄�), and let
us prove that �̄� = �̄�. Indeed, 𝑇(�̄� − �̄�) = 𝑇(�̄�) − 𝑇(�̄�) = 0̄. Hence �̄� − �̄� is
a solution to 𝑇(�̄�) = 0̄. Since the only solution to 𝑇(�̄�) = 0̄, it follows that
�̄� − �̄� = 0̄ and therefore �̄� = �̄�. □
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Corollary. Let 𝐹 : R𝑛 → R𝑚 , and let 𝐴 be the standard matrix of 𝑇. TFAE:
(1) 𝑇 is one-to-one.

(2) the equation 𝐴�̄� = 0̄ has a unique solution.

(3) the columns of 𝐴 are linearly independent.
Proof. (2), (3) are equivalent as we have already seen in previous theorems
(in the textbook this is green remark on 𝑝.61)

To see that (1), (2) are equivalent, by the previous theorem 𝑇 is one-to-
one iff 𝑇(�̄�) = 0̄ has a unique solution. Since 𝑇(�̄�) = 𝐴 · �̄�, this is the same
equation as 𝐴�̄� = 0̄. Hence (1) and (2) are equivalent.

□

Example 8 (Example 5 p.82).

5 Matrix Altgebra
Let 𝐴 be the 𝑚 × 𝑛 matrix

𝐴 =


𝑎1,1 ... 𝑎1,𝑛
𝑎2,1 ... 𝑎2,𝑛
...

. . .
...

𝑎𝑚,1 ... 𝑎𝑚,𝑛


To access the (𝑖 , 𝑗)-cell in 𝐴 we denote 𝐴𝑖 , 𝑗 = 𝑎𝑖 , 𝑗 .
Definition. Let 𝐴, 𝐵 be two matrices of the same 𝑚 × 𝑛 dimension and
𝑟 ∈ R be a scalar. Define:
(1) 𝐴+ 𝐵 is a matrix of dimension 𝑚 × 𝑛 defined by (𝐴+ 𝐵)𝑖 , 𝑗 = 𝐴𝑖 , 𝑗 + 𝐵𝑖 , 𝑗 .

(2) 𝑟𝐴 is a matrix of dimension 𝑚 × 𝑛 defined by (𝑟𝐴)𝑖 , 𝑗 = 𝑟(𝐴𝑖 , 𝑗)
Theorem. (1) 𝐴 + 𝐵 = 𝐵 + 𝐴.

(2) (𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶).
(3) 𝐴 + 0 = 𝐴, where 0 is the zero matrix defined by 0𝑖 , 𝑗 = 0.

(4) 𝑟(𝐴 + 𝐵) = 𝑟𝐴 + 𝑟𝐵.

(5) (𝑟 + 𝑠)𝐴 = 𝑟𝐴 + 𝑠𝐴.

(6) 𝑟(𝑠𝐴) = (𝑟𝑠)𝐴.
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5.1 Matrix multiplication
Definition. Let 𝑓 : R𝑛 → R𝑚 and 𝑔 : R𝑚 → R𝑘 be function. Define the
composition of 𝑔 on 𝑓 , denoted by 𝑔 ◦ 𝑓 : R𝑛 → R𝑘 by

𝑔 ◦ 𝑓 (�̄�) = 𝑔( 𝑓 (�̄�))

Claim. If 𝑇 : R𝑛 → R𝑚 and 𝑆 : R𝑚 → R𝑘 are linear transformations then 𝑆 ◦𝑇
is a linear transformation.

If 𝑇 = 𝑇𝐴 and 𝑆 = 𝑇𝐵, then

𝑇 ◦ 𝑆(�̄�) = 𝑇(𝑆(�̄�)) = 𝐵(𝐴𝑥) = 𝐵(𝑥1𝐶1(𝐴) + ... + 𝑥𝑛𝐶𝑛(𝐴)) =

= 𝑥1𝐵𝐶1(𝐴) + ... + 𝑥𝑛𝐵𝐶𝑛(𝐴) =

| | ... |

𝐵𝐶1(𝐴) 𝐵𝐶2(𝐴) ... 𝐵𝐶𝑛(𝐴)
| | ... |

 · �̄�
Definition. Let 𝐵 be 𝑘 × 𝑚 and 𝐴 be 𝑚 × 𝑛 matrices, define

𝐵 · 𝐴 =


| | ... |

𝐵𝐶1(𝐴) 𝐵𝐶2(𝐴) ... 𝐵𝐶𝑛(𝐴)
| | ... |


Remark. Matrix multiplication is only defined when the number of columns
of the left metrix is the same as the number of rows of the right matrix.

Theorem. If 𝑇 : R𝑛 → R𝑚 and 𝑆 : R𝑚 → R𝑘 are linear transformations,
𝑇 = 𝑇𝐴 and 𝑆 = 𝑇𝐵, then 𝑇 ◦ 𝑆 = 𝑇𝐵·𝐴.

Corollary. The columns of 𝐵 · 𝐴 are linear combinations of the columns of
𝐵.

Fast Computation: (𝐵 · 𝐴)𝑖 , 𝑗 = 𝑏𝑖 ,1𝑎1, 𝑗 + ... + 𝑏𝑖 ,𝑚𝑎𝑚,𝑗 .

Corollary. The rows of 𝐵 · 𝐴 are linear combinations of the rows of 𝐴.

Theorem. Whenever the products below are defined, we have the follow-
ing:

(1) (𝐴 · 𝐵) · 𝐶 = 𝐴 · (𝐵 · 𝐶).

(2) 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶.
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(3) (𝐵 + 𝐶)𝐴 = 𝐵𝐴 + 𝐶𝐴.

(4) 𝑟(𝐴𝐵) = (𝑟𝐴)𝐵 = 𝐴(𝑟𝐵).

(5) 𝐼𝑚𝐴 = 𝐴 = 𝐴𝐼𝑛 (given that 𝐴 is 𝑚 × 𝑛)

Remark. (1) In general 𝐴𝐵 ≠ 𝐵𝐴.

(2) No cancellation law: 𝐴𝐵 = 𝐴𝐶 ⇏ 𝐵 = 𝐶.

(3) 𝐴𝐵 = 0 ⇏ 𝐴 = 0 or 𝐵 = 0.

(4) 𝐴 · �̄� is a spectial case of matrix multiplication when we think of �̄� as
a 𝑛 × 1 matrix.

Definition. Let 𝐴 be a square matrix. Define 𝐴𝑚 = 𝐴 · 𝐴.... · 𝐴︸       ︷︷       ︸
𝑚-times

. Also let

𝐴0 = 𝐼𝑛 and 𝐴1 = 𝐴.

Definition. Let 𝐴 be an 𝑚×𝑛 matrix. The transpose of 𝐴 is an 𝑛×𝑚 matrix
defined by (𝐴𝑇)𝑖 , 𝑗 = 𝐴 𝑗 ,𝑖 .

Theorem. (1) (𝐴𝑇)𝑇 = 𝐴.

(2) (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇 .

(3) (𝑟𝐴)𝑇 = 𝑟𝐴𝑇 .

(4) (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 .

5.2 Inverse of Matrix
Definition. A square matrix 𝐴 of dimension 𝑛 × 𝑛 is invertible if there is
an 𝑛 × 𝑛 matrix 𝐶 such that

𝐴𝐶 = 𝐶𝐴 = 𝐼𝑛

Claim. If 𝐴 is invertible then 𝐶 is unique. We denote 𝐶 = 𝐴−1

Remark. We are only allowed to write 𝐴−1 after we proved (somehopw)
that 𝐴 is invertible.

non-invertible matrices are sometimes called singular matrices.
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Theorem. Let 𝐴 =

[
𝑎 𝑏

𝑐 𝑑

]
. If 𝑎𝑑 − 𝑏𝑐 ≠ 0, then 𝐴 is invertible and 𝐴−1 =

1
𝑎𝑑−𝑏𝑐

[
𝑑 −𝑏
−𝑐 𝑎

]
. If 𝑎𝑑 − 𝑏𝑐 = 0, then 𝐴 is singular.

Theorem. If 𝐴 is invertible then for every 𝑏 ∈ R𝑛 , 𝐴�̄� = 𝑏 has a unique
solution given by �̄� = 𝐴−1𝑏.

Theorem. (1) If 𝐴 is invertible then 𝐴−1 is invertible and (𝐴−1)−1 = 𝐴.

(2) If 𝐴 is invertible then 𝐴𝑇 is invertible and (𝐴𝑇)−1 = (𝐴−1)𝑇 .

(3) If 𝐴, 𝐵 are invertible then 𝐴𝐵 is invertible and (𝐴𝐵)−1 = 𝐵−1𝐴−1.

Definition. An elementary matrix is a matrix obtained by performing a
basic row operation on 𝐼𝑛 .

Theorem. Let 𝐸 be an elementary matrix. 𝐸𝐴 is the matrix obtained by
performing the basic operation of 𝐸 on 𝐴.

Corollary. Each elementary matrix is invertible and the inverse matrix is
the elementary matrix of the inverse operation.

Theorem. If 𝐴 is reducible to 𝐼𝑛 then 𝐴 is invertible. Moreover, any se-
quence 𝐸1....𝐸𝑛 of basic operations that reduces 𝐴 to 𝐼 also reduces 𝐼 to
𝐴−1

Remark. We can view [𝐴|𝐼] and trying to solve 𝑛-many equations simoul-
tanuiously 𝐴𝑥 = 𝑒𝑖 . Then the columns of 𝐴−1 would exactly be those
solutions.

5.3 Characterization of invertible matrix
Theorem. TFAE for any 𝑛 × 𝑛 matrix 𝐴:

(1) 𝐴 is invertible.

(2) 𝐴 is reducible to 𝐼.

(3) in any Eachelon form of 𝐴 every column has a leading entry.

(4) 𝐴𝑋 = 0 has a unique solution.
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(5) the columns of 𝐴 are linearly independent.

(6) 𝑇𝐴 is one-to-one.

(7) there is an 𝑛 × 𝑛 matrix 𝐶 such that 𝐶𝐴 = 𝐼 (left invertible)

(8) in any Eachelon form of 𝐴 there are no zero lines.

(9) for every 𝑏, 𝐴𝑋 = 𝑏 has at least one solution.

(10) the columns of 𝐴 span R𝑛 .

(11) the map 𝑇𝐴 is onto.

(12) there is an 𝑛 × 𝑛 matrix 𝐶 such that 𝐴𝐶 = 𝐼 (right invertible)

(13) 𝐴𝑇 is invertible.

Corollary. If 𝐴𝐵 = 𝐼 e then 𝐴, 𝐵 have to be both invertible with 𝐴 = 𝐵−1

and 𝐵 = 𝐴−1.

Corollary. If 𝐴𝐵 is invertible then 𝐴, 𝐵 are both invertible.

Proof. 𝐴𝐵𝐶 = 𝐼 and 𝐴(𝐵𝐶) = 𝐼 and therefore 𝐴 is invertible. 𝐶𝐴𝐵 = 𝐼 and
therefore 𝐵 is invertible. □

5.4 invertible linear transformations
𝑇 : R𝑛 → R𝑛 is called invertible if there is 𝐷 : R𝑛 → R𝑛 such that 𝑇(𝑆(𝑥)) =
𝑥 and 𝑆(𝑇(𝑥)) = 𝑥. In which case we denote 𝑆 = 𝑇−1.

Theorem. 𝑇 is invertible iff 𝑇 is one to one and onto.

Theorem. 𝑇 = 𝑇𝐴 is invertible iff 𝐴 is invertible in which case 𝑇−1 = 𝑇𝐴−1 .

Corollary. For a linear transformation 𝑇 : R𝑛 → R𝑛 , 𝑇 is invertible iff 𝑇 is
one-to-one or onto.
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6 Determinants
The following is a recursive definition:

Definition (/Theorem). Let 𝐴 be an 𝑛 × 𝑛 square matrix, then

det(𝐴) =
𝑛∑

𝑘=1
𝑎𝑖𝑘 det(𝐴𝑖𝑘) =

𝑛∑
𝑘=1

𝑎𝑘 𝑗 det(𝐴𝑘 𝑗)

Where 𝑎𝑖 𝑗 is the element in the 𝑖th-row and the 𝑗th-column of 𝐴, and 𝐴𝑖 𝑗 is
the (𝑛 − 1) × (𝑛 − 1)-matrix obtained from 𝐴 by erasing the 𝑖th-row and the
𝑗th-column.

If 𝐴 = [𝑎11] is a 1 × 1 matrix then det(𝐴) = 𝑎11. If 𝐴 =

[
𝑎11 𝑎12
𝑎21 𝑎22

]
, then

det(𝐴) = 𝑎11𝑎22 − 𝑎21𝑎12.

Theorem. If 𝐴 =


𝑎11 ∗ . . . ∗
0 𝑎22 . . . ∗
. . .

... . . . ∗
0 0 . . . 𝑎𝑛𝑛

 is a triangular matrix then det(𝐴) =

𝑎11 · 𝑎22 · 𝑎𝑛𝑛 .

Theorem. Let 𝐴 be a square matrix.

(a) If 𝐵 is the outcome of multiplying a row of 𝐴 by 𝛼 ≠ 0 then det(𝐴) =
1
𝛼 det(𝐵).

(b) If 𝐵 is the outcome of interchanging rows of 𝐴 then det(𝐴) = −det(𝐵).

(c) If 𝐵 is the outcome of adding a row of 𝐴 multiplied by a scalar 𝑐 to
another row then det(𝐴) = det(𝐵).

Theorem. 𝐴 is invertible iff det(𝐴) ≠ 0

Theorem. det(𝐴) = det(𝐴𝑇)

Theorem. det(𝐴 · 𝐵) = det(𝐴)det(𝐵)
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Theorem (Cramer’s rule). Let 𝐴 be an invertable matrix then for every
𝑏 ∈ R𝑛 , 𝐴�̄� = 𝑏 has a unique solution given by

𝑥𝑖 =
det(𝐴𝑖(𝑏))

det(𝐴)

where 𝐴𝑖(𝑏) is the matrix obtained from 𝐴 by replacing the 𝑖th column by
𝑏.

Definition. The adjugate matrix of 𝐴, is defined by

(adj(𝐴))𝑖 𝑗 = (−1)𝑖+1 det(𝐴 𝑗𝑖)

Theorem. If 𝐴 is invertible then 𝐴−1 = 1
det(𝐴) · adj(𝐴)
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Appendix: Complex numbers
A complex number is a number of the form 𝑎 + 𝑏𝑖, where 𝑎, 𝑏 ∈ R are real
numbers, and 𝑖 is an new number which satisfies

√
−1 = 𝑖, that is, 𝑖2 = −1.

𝑎 is called the real part and 𝑏 the imaginary part.

Example 9. 2 + 2𝑖, 𝑖 − 1, 5𝑖, 𝜋 are all complex numbers. The real part of
𝑖 − 1 is −1 and the imaginary part if 1.

Complex numbers equality:

𝑎 + 𝑏𝑖 = 𝑐 + 𝑑𝑖 if and only if 𝑎 = 𝑐, 𝑏 = 𝑑

We denote by C = {𝑎 + 𝑏𝑖 | 𝑎, 𝑏 ∈ R} the set of all complex numbers. So
C can be identified with pairs (𝑎, 𝑏) and therefore can be thought of as a
plane- called the Complex/Gauss Plane.

(include graphics of Gauss plane)
We add and subtract complex numbers as follows:

(𝑎 + 𝑖𝑏) + (𝑐 + 𝑖𝑑) = (𝑎 + 𝑐) + 𝑖(𝑏 + 𝑑)
(𝑎 + 𝑖𝑏) − (𝑐 + 𝑖𝑑) = (𝑎 − 𝑐) + 𝑖(𝑏 − 𝑑)

We multiply them as follows:

(𝑎 + 𝑖𝑏)(𝑐 + 𝑖𝑑) = (𝑎𝑐 − 𝑏𝑑) + 𝑖(𝑎𝑑 + 𝑏𝑐)
To divide them we need something called the complex conjugate:

Definition. Given a complex number 𝑧 = 𝑎 + 𝑖𝑏, the complex conjugate of
𝑧, denoted by �̄� is the complex number �̄� = 𝑎 − 𝑖𝑏.

Claim. 𝑧 · �̄� = 𝑎2 + 𝑏2 ∈ R is a non-negative real number. Moreover, if 𝑧 ≠ 0,
then 𝑎2 + 𝑏2 > 0.

Proof. For the first part

𝑧 · �̄� = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) = 𝑎2 − (−𝑏2) + 𝑖(𝑎𝑏 − 𝑏𝑎) = 𝑎2 + 𝑏2

For the second part, if 𝑧 ≠ 0, then either 𝑎 ≠ 0 and then 𝑎2 > 0 or 𝑏 ≠ 0 in
which case 𝑏2 > 0. In any case 𝑎2 + 𝑏2 > 0. □
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So in order to divide 𝑧
𝑤 , where 𝑤 ≠ 0 we can do the following:

𝑧

𝑤
=

𝑧�̄�

𝑤�̄�

Example 10.

Together with those operations, C is what we call a field, which similar
to R, gives meaning to equations with complex variables.
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