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Abstract

We study ultrafilters on regular uncountable cardinals, with a primary focus on
w1, and particularly in relation to the Tukey order on directed sets. Results in-
clude the independence from ZFC of the assertion that every uniform ultrafilter
over w; is Tukey-equivalent to [2%]<%  and for each cardinal » of uncountable
cofinality, a new construction of a uniform ultrafilter over xk which extends the
club filter and is Tukey-equivalent to [27]<“. We also analyze Todorcevic’s ul-
trafilter U(T) under PFA, proving that it is Tukey-equivalent to [2%1]<% and
that it is minimal in the Rudin-Keisler order with respect to being a uniform
ultrafilter over w;. We prove that, unlike PFA, MA,, is consistent with the
existence of a coherent Aronszajn tree T for which U (T') extends the club filter.
A number of other results are obtained concerning the Tukey order on uniform
ultrafilters and on uncountable directed systems.

Keywords: Ultrafilter, Tukey Order, Isbell’s problem, Tukey-top,
Rudin-Keisler Order

1. Introduction

Ultrafilters, and particularly their cofinalities and combinatorial properties,
are of special interest in several areas of mathematics such as topology, combi-
natorics, group theory; and more centrally to model theory, mathematical logic,
and set theory. In this paper we deal with several fundamental questions con-
cerning uniform ultrafilters over regular uncountable cardinals in general and
wi in particular. Recall that an ultrafilter over x is uniform if all of its ele-
ments have cardinality k—hence it is not isomorphic to a trivial extension of an
ultrafilter over a smaller cardinal.

Our results were motivated by the following longstanding open problem of
Kunen:
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Question 1.1 (Kunen). Is it consistent that there is a uniform ultrafilter over
wy which is generated by fewer than 28 -many sets?

It is also natural to pose this question for any uncountable cardinal x; we will
refer to this variant as Kunen’s problem at k.

There are several known methods to obtain ultrafilters over w which are
generated by fewer than 2%°-many elements. Perhaps the most basic of them
is Kunen’s method [43] to iterate Mathias forcing with respect to an ultrafilter.
In unpublished work, Carlson generalized Kunen’s construction to produce ul-
trafilters with small generating sets over supercompact cardinals. However, this
method cannot be straightforwardly adapted to produce such ultrafilters over
small uncountable cardinals. Recently, Raghavan and Shelah have shown that
Kunen’s problem at X1 and at 2% have positive answers modulo a large car-
dinal hypothesis [49] (in the latter model 2% is weakly inaccessible). Still, new
methods seem to be required to yield solutions to Kunen’s problem at successors
of regular cardinals.

Kunen’s problem can be viewed as asking whether uniform ultrafilters over
wy are necessarily maximally complicated, at least when measured by their
character—the number of elements which are required to generate them. There
are other natural notions of complexity on ultrafilters which are finer. The
Tukey order is defined and studied in the wider generality of directed sets,
and originated in the study of Moore-Smith convergence of nets from topology
(definitions and notation are reviewed in section [2[ below). The basic theory
was set up by Tukey [58] in the 1940s, then further studied by Schmidt and
Isbell [51) [31].

Tukey showed that if x is an infinite cardinal, the collection [k]<“ of all
finite subsets of x ordered by inclusion serves as an important benchmark in the
Tukey order: if D is any directed set of cardinality at most xk, D < [k]<“. A
directed set D of cardinality & such that D =¢ [k]<%, is said to be Tukey-top.
Isbell [31] and, independently, Juhdsz [34] constructed Tukey-top ultrafilters
over any cardinal k using independent families. Isbell posed what came to be
known as Isbell’s problem: is every ultrafilter over w Tukey-top?

While several constructions of Tukey-top ultrafilters are known [I3] 45, 24],
the construction of non-Tukey-top ultrafilters was addressed much later by
Milovich [45], and Dobrinen and Todorcevic [23], and brought about the ac-
tive subject of the Tukey order on ultrafilters over w. They showed that con-
sistently there are non-Tukey-top ultrafilters over w. More precisely, Milovich
constructed one from <>, while Dobrinen and Todorcevic showed that a p-point
over w is non-Tukey-top. In the last decade, the subject has been studied inten-
sively by Dobrinen, Raghavan, Shelah, Todorcevic, and others [54, 23] 48] [50];
for a survey on the matter see [22]. Recently, Cancino and Zaplatal [14] an-
nounced the full resolution of Isbell’s problem by showing that it is consistent
that every nonprincipal ultrafilter over w is Tukey-top.

As with Kunen’s problem, it is natural to generalize Isbell’s problem to other
cardinals. It is easily seen that a positive answer to Isbell’s problem at x (in
ZFC) implies a negative answer to Kunen’s problem: if [A\]<% <7 U, then U has



character at least A. Also, since every uniform ultrafilter on a regular cardinal
k has character at least k™, 2° = k™ implies that all uniform ultrafilters over s
have character exactly 2¢. On the other hand, the equality 2* = x* does not
trivialize Isbell’s problem at  in the same way. For instance, while the Proper
Forcing Axiom (PFA) implies 2%t = N, it is not known if PFA implies that
every uniform ultrafilter over wy is Tukey-top.

We extend this study and consider the Tukey order of ultrafilters over un-
countable cardinals. We establish a full independence result for Isbell’s question
on wi. For the first half of this result we prove:

Theorem. It is consistent that every uniform ultrafilter over wy is Tukey-top.
We present several models for this:
1. The usual forcing extension adding 2% -many Cohen or random reals.
2. The Cancino-Zaplatal model where every ultrafilter over w is Tukey-top.
3. A model due to Piikry where GCH holds.

4. The Abraham-Shelah model [2] and its generalization for successors of
singular cardinals [10].

Note that after adding we-many Cohen reals (via Add(w,wz)) to a model of
GCH, there is a non-Tukey-top ultrafilter over w, since = ¢ in that model and
Ketonen [41] proved that this is sufficient for there to be a p-point.

The other half of the independence of Isbell’s question at w; is obtained via
a classical construction due to Laver [44] of a uniform ultrafilter over w; which
is wi-generated modulo a countably complete ideal over w;. It is consistent
relative to large cardinals that this construction can be carried out. We will
also leverage work of Galvin to show that the constructed ultrafilter exhibits
even stronger combinatorial properties. More generally, we establish that weakly
normal ultrafilters are not Tukey-top. Several other notions and constructions
will be addressed, relevant to the extraordinary work from the 1970’s on non-
regular ultrafilters over w; [36] B8, [6 52]. Recently, Usuba [59] used related
ideas to address questions about the monotonicity of the ultrafilter number. In
section [5.2] we show that this investigation is more general, and in fact yields
comparisons of the Tukey types of ultrafilters over different cardinals.

The Tukey order on uniform ultrafilters over measurable cardinals was re-
cently studied by Benhamou and Dobrinen [9]. Many results from the Tukey
order of ultrafilters over w generalize to measurable cardinals, but also some fun-
damental differences appear. For example, over a measurable cardinal s there
is always a non-Tukey-top ultrafilter, and in fact a k-complete non-x-Tukey-top
ultrafilter (see definition [2.3). This is because a measurable cardinal x always
carries a normal ultrafilter, which is necessarily non-x-Tukey-top. Moreover, in
contrast to Isbell’s result on w, k-complete xk-Tukey-top ultrafilters might not ex-
ist; for example, Benhamou and Gitik [11] noticed that in Kunen’s L{U], where
U is a the normal measure, there is no xk-Tukey-top x-complete ultrafilter over



k. This was later generalized by Benhamou [§] and Benhamou-Goldberg [12]
to other canonical inner models. In section we provide another construc-
tion for Tukey-top ultrafilters which extend the club filter over any cardinal
k of uncountable cofinality. For this, we introduce the notion of stationarily-
independent families and show that such families exist in ZFC for any cardinal
of uncountable cofinality. This gives an answer to [8, Q. 5.4], and improves the
construction from [9].

In the remaining part of this paper, we analyze Todorcevic’s ultrafilter U(T')
using fragments of the PFA. This ultrafilter is defined for a coherent Aronszajn
tree (A-tree) T on wy and in general yields a uniform filter U(T"). Moreover,
if the class of c.c.c. forcings is closed under taking products (a consequence of
MA,,), U(T) is an ultrafilter [50].

We show that PFA implies that U(T) is Tukey-top and also minimal in
the Rudin-Keisler order among uniform ultrafilters over w;. This complements
previous work of Todorcevic [506] [57].

Theorem. Assume PFA(wy). For any coherent A-tree T, [wa]<¥ <p U(T). In
particular, PFA implies U(T) is Tukey-top.

Theorem. Assume PFA(wq). If T is any coherent A-tree and f : wi — w,
then there is a U e U(T) such that fIU is either bounded or one-to-one.

Combining this with work of Todorcevic [57] yields the following corollary.

Corollary. Assume PFA(w). If T is any coherent A-tree and f : w3 — w is
any function which is not constant on a set in U(7"), then f is a finest partition
with respect to U(T).

It is not hard to show that a uniform ultrafilter over w; is weakly normal if
and only if it both extends the club filter and is <gg-minimal with respect to
being a uniform ultrafilter over wy. While Laver has shown that MA,, implies
there are no weakly normal ultrafilters over wy [44], we show that this result
does not decide whether U(T") extends the club filter.

Theorem. [t is relatively consistent with MA,, that there is a coherent A-tree
T such that U(T) extends the club filter.

This paper is organized as follows. In section [2| we provide the basics of
the relevant theory of the Tukey order and previously known results about the
Tukey types of ultrafilters over uncountable cardinals. Section [3] reviews and
establishes some basic facts about certain benchmarks in the Tukey order which
will be needed later in the paper. We establish the independence of Isbell’s
question on wy in section [d]and establish the consistency of every ultrafilter over
w1 is Tukey-top, and in section [5| we settle Isbell’s problem at higher cardinals.
In section [6] we prove our results about U(T'). We close with a list of questions
and possible future directions in section
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2. Preliminaries and Basic Results

We now fix some notational conventions and review some of the standard
terminology which we will use throughout the rest of the paper.

Throughout much of the paper, we assume the reader has a background in
modern set theory. The texts [32] and [43] provide a broad foundation in set
theory; [40] covers large cardinals and related concepts. Information on MA,,,
can be found in [43]; information on PFA can be found in [I] and [53].

If f is a function and A is a subset of the domain of f, we will use f[A] to
denote the image of A under f. For a set A, and a cardinal ), [A]* denotes
the collection of subsets of A of cardinality . Similarly, [A]<* is the collection
of subsets of A of cardinality < A\. The set A* denotes the set of all functions
f: XA — Aand A<* denotes the set of functions of the form f : a — A for
some o < A. For f,g € A", any binary relation R on A, and any ideal I over
k we write ¢ Ry f if and only if {a < k | g(a) R f(a)} € I. In particular,
we write f < g when for every o, f(a) < g(a) and f <* g if g <y, f,
where Jf, = {X < k | sup(X) < &} is the bounded ideal over k. These
relations are typically not antisymmetric but induce antisymmetric relations on
the associated equivalence classes. We will often abuse notation by working
with representatives rather than equivalences classes even though we will treat
these as partial orders. We denote by Add(u, A) the Cohen forcing consisting of
partial functions f : g x A — 2 such that |f]| < p.

2.1. The Tukey order

Recall that a poset is a set P equipped with a transitive, reflexive, antisym-
metric relation <. A poset is (upward) directed if for any p,q € P there is r € P
with r = p,q. A directed set is a poset which is directed. For A, B € P, we write
A < B when for every a € A and b€ B, a < b. If an element of P appears in a
relation with a set, the meaning is to replace it with its singleton (e.g. p < A
means {p} < A).

For p a cardinal, a poset (P, <) is called p-directed when for any A € P with
|A] < p there is p € P with p > A. Note that directed is the same as w-directed.

A subset A of a poset (P, <) is:

1. bounded if there is p € P such that A < p,
2. cofinal if for every p € P there is a € A such that p < a.

The cofinality of a poset P, denoted cf P, is the minimum cardinality of a cofinal
subset.



Definition 2.1. Let (P, <p),(Q, <qg) be posets. A function f: P — Q is
1. monotone if whenever p,qe P and p <p q, f(p) <q f(q),
2. Tukey if for every bounded B < @, f~(B) is bounded in P.

3. cofinal if for every cofinal A € P, f[A] is cofinal in Q.

The poset P is Tukey-reducible to @, written P <p @, if there is a Tukey map
f: P — Q, or equivalently if there is a cofinal map ¢ : Q@ — P.

It is immediate from the definitions that if (P, <p) <7 (Q, <qg), then cf(P, <p
) < cf(Q, <q)-

The equivalence classes of the Tukey reducibility order are called Tukey types.

For any infinite cardinal, Tukey proved that there is a <p-maximum directed
set of cardinality k.

Proposition 2.2 ([58, Thm. 5.1]). For any directed set (P,<p) such that
|P| < &, there is a Tukey reduction (P,<p) <r ([£]*¥,<Z).

Definition 2.3. A directed set P is (u, A)-Tukey-top if there exists a collection
A € [P]* such that every B € [A]* is unbounded in P. In the context of
ultrafilters over a cardinal k, by p-Tukey-top we mean (u, 2%)-Tukey-top. Tukey-
top means w-Tukey-top, as clarified in the following theorem.

Theorem 2.4 (Tukey [58]). Let A and p be regular cardinals, and suppose that
cf([A]=F, <) = A. The following are equivalent for any poset P:

1. P is (u, \)-Tukey-top.
2. [\]<* <7 P.

Theorem 2.5 (Schmidt [51, Thm. 14]). If a p-directed poset P has cofinality
A then P <p [A]<F.

Fact 2.6 (Folklore). If P <7 @ and @ is p-directed then P is p-directed.

Proof. Suppose for contradiction that A € [P]* has no upper bound, where \ <
u. Let k = |P|. Since P <7 [k]<*, there is an unbounded map f : P — [k]<H,
which can easily be made injective (say by reserving k elements of x to serve as
labels). Hence f[A] is also unbounded. This is a contradiction, since [k]<# is
p-directed. O

2.2. Ultrafilters

Recall that F is a filter over a set X if F € &(X) is nonempty, upwards
closed, downwards directed, and does not contain . A filter U is an ultrafilter
if it is maximal under inclusion with respect to being a filter or, equivalently,
for every Y € X either Y or X\Y is in U. An ultrafilter is nonprincipal if it
does not contain any singletons. It is uniform if all sets in the ultrafilter have
the same cardinality.

In this paper we shall primarily be concerned with Tukey types of uniform
ultrafilters, considered as directed posets under reverse inclusion. The next
lemma is useful when comparing ultrafilters using the Tukey order.



Lemma 2.7 ([23, Fact 6)). If U, V are uniform ultrafilters over an infinite
cardinal k and U <7V, then there is a monotone cofinal map f:V — U.

Thus Tukey reductions between uniform ultrafilters over the same set are always
witnessed by monotone cofinal maps.

While it will be more tangential to our discussion, the most important order
on ultrafilters is a further refinement of the Tukey order known as the Rudin-
Keisler order.

Definition 2.8. Let U be an ultrafilter over a set X, and let f : X — Y be a
function. The projection f.U of U to Y along f is the ultrafilter

(BcY | fYB)euy.

For V an ultrafilter over Y, we say that V is Rudin-Keisler reducible to U and
write V <gx U when there is f : X — Y such that V = f.U.

It is a straightforward consequence of the definitions that for ultrafilters U
and V, if U <gg V then U <r V. Ultrafilters U and V are said to be isomorphic
when there is a bijection f between their underlying sets such that V = f.U,
and it is known that if 4 <grx V and V <grg U then U and V are in fact
isomorphic.

We will pause here to remark that ultrafilters appear in many different con-
texts in the literature and tend to be denoted in many different ways: by p and
¢ in the study of the Cech-Stone compactification of w to emphasize their role
as points; by U and V for ultrafilters over w or other small cardinals when one
wishes to emphasize that they are collections of sets; by U and V in the context
of large cardinals. As different parts of this paper are closest to the contexts
of these different notational traditions, our conventions will shift. This should
cause no confusion; nonetheless, we alert the reader to promote clarity.

We are interested in Tukey types of uniform ultrafilters over regular uncount-
able cardinals, with w; as the most salient cardinal and the central questions
being whether all ultrafilters over a given cardinal are (u, A)-Tukey-top for fixed
regular cardinals p < A. The study of such ultrafilters traces back to Keisler [15],
who introduced the following notion motivated from a model-theoretic point of
view:

Definition 2.9. Let A\ < p be cardinals. An ultrafilter U is (\, u)-regular if
there is a set A € U such that |A| = p and for every B € A with |B| = A,
B = &. If U is a uniform ultrafilter over x we say that U is regular if it is
(w, k)-regular.

Regularity-like properties were later studied in the 1970s in a series of influ-
ential papers by Ketonen-Benda [6], Kanamori [37, 39, 35 [38], Kunen [42] and
Taylor [52]. The following definition is highly connected to regularity:

Definition 2.10. A uniform ultrafilter U over « is called weakly normal if
for any regressive function f : K — k, there is § < x such that f~1[0] € U.
Equivalently, [id]y = supg,.[colu-



It is well-known that weakly normal ultrafilters extend the club filter. The
next theorem establishes the equivalence of the existence of non-regular ultra-
filters with the existence of weakly normal ones:

Theorem 2.11 (Kanamori [37], Ketonen-Benda [0]). Let U be a uniform ultra-
filter over k', then:

1. IfU is weakly normal then U is non-regular.

2. If U is non-regular, then U is above a weakly normal ultrafilter in the
Rudin-Keisler order.

Theorem 2.12 (Laver [44]). M A, implies that every uniform ultrafilter over
w1 18 regular. In particular, MA,,, implies there are no weakly normal ultrafilters
over wy.

Kanamori [38] studied (p, A)-Tukey-top ultrafilters, though under a different
name, as a weakening of regular ultrafilters, proving that any uniform ultrafilter
over an uncountable cardinal is (27, 2%)-Tukey-top. Shortly after, Taylor and
Galvin proved the following results which constitute a starting point for the
investigation of this paper:

Theorem 2.13 (Taylor [52, Thm 2.4(2)]). If U is a uniform ultrafilter over a
successor cardinal k7, then U is (k, kT)-Tukey-top.

Theorem 2.14 (Galvin; appears as [4, Thm. 3.3]). Let u be a cardinal such
that p=F = pu. Then for any normal filter F over p, F is not (u, u™)-Tukey-top.

Although we will mostly be interested in small uncountable cardinals, let
us mention that recently the topic of (non)-(u, A)-Tukey-top ultrafilters gained
renewed interest in the case of measurable cardinals under yet another name—
the Galvin property—due to several new applications (e.g. [9, [0} [T} [12]).

3. Distinguished Tukey-types Related to Ultrafilters over Uncount-
able Cardinals

In this section, we study some Tukey types which relate to ultrafilters over a
regular uncountable cardinal k, namely cofinal types of cardinality at most 2.

8.1. The Abraham-Shelah model and the Tukey-type of the club filter

Let us denote the club filter by Cub; this is the filter generated by club:ﬂ
in k. First observe that the Tukey type of the club filter is the following:

Lemma 3.1 (Folklore). For x regular, (Cub,,2) =1 (k*, <)

li.e. set which are closed in the order topology of x and unbounded.



Proof. Cub, <t k" is witnessed by the unbounded function X — fx, where fx
is the increasing enumeration of the club X. The other direction is witnessed by
the cofinal function f : Cub,, — " defined by f(X)(a) = fx(a+ 1). Certainly
both of these functions are monotone, and one checks that they are unbounded
and cofinal, respectively, by examining clubs of closure points of elements of
K". O

It follows that the generalized dominating number ?,, = cf (k*, <¥) = cf (K", <
) is just x(Cuby); as usual, d denotes cf(w*,<). The fact that the club filter
is o-complete automatically rules out the possibility of it being Tukey-top, but
can it be w;-Tukey-top? As stated in the previous section (see theorem [2.14),
Galvin showed that under k<" = k, every normal filter over x is not Tukey-above
[£T]=*. Abraham-Shelah proved the following theorem [2]:

Theorem (Abraham-Shelah Model). Assume GCH holds. Suppose r,\ are
infinite cardinals such that cf(k) = k < kT < cf(A\) < X\. Then, in a forcing
extension there is a family C of A\-many clubs in k¥, such that:

For every subfamily D < C with |D| = ™, |(\D| < k.
Moreover, 26 = 25" = X holds in this model provided cf(\) > r*.

In particular, in the Abraham-Shelah model, the club filter Cub,+ is x*-
Tukey-top. At the successor of a singular cardinal, this was established in [10],
and for a (weakly) inaccessible cardinal &, it is still open whether the club filter
can be x-Tukey-top [I0, Q. 5.7]. Applying this theorem to wy, we can find a
model with 2% -many clubs such that the intersection of any X;-many of these
clubs is finite. It follows that any extension of the club filter is not Tukey-top.
More generally, the club filter enjoys the property of being deterministic, as
introduced in [7]. A filter F is deterministic if it is generated by a set B such
that for any A < B, if (). A ¢ F then ().A € F*. Deterministic filters have the
property that if F € F’ then F <p F”.

Proposition 3.2. Cub, is a deterministic filter. Hence, any uniform extension
of the club filter is Tukey-above it.

So in the Abraham-Shelah model, in fact any extension of Cub,, is wi-
Tukey-top. In the next section, we will moreover see that in this model every
uniform ultrafilter over w; is Tukey-top.

3.2. On the cofinal type of k(=)

The directed set (w*', <) will play an important role later in the paper.
Much of the basic analysis we will need readily generalizes to higher cardinals.

Lemma 3.3. Suppose that I is a k™ -complete ideal over k™. Then

(,{(HJF)’ gI) =r (ﬁ-/(nJr)’ <)



Proof. Clearly, the identity map is a Tukey reduction witnessing that
(5, <p) <7 (5, Q).

For the other direction, the assumption that I is k-complete ensures the ex-
istence of a partition Kt = |4,_,+ A; where each A; € I (see [40, 16.3]).
Cousider the map f — F(f), where F(f)(«) := f(¢) for the unique i < k* such
that o € A;. To see that F' is a Tukey reduction, let A < £ be unbounded
in <, meaning there is i* < x* such that {f(i*) | f € A} is unbounded in .
Suppose for contradiction that g is a <;-bound for F[.A]. Consider g} A;x, and
note that since I is kT-complete, there must be a positive A’ € A;x such that
gl A’ is constantly a* for some a* < x. This is impossible since for every f € A,
F(f) <1 g, so there is ay € A’ such that o* = g(ay) = F(f)(ar) = f(i*), in
which case a* bounds {f(i*) | f € A} within . O

The following lemma provides a significant lower bound for the Tukey type
of k().

Lemma 3.4. Suppose that there is a family F < [/<;+]”Jr which is almost disjoint
modulo bounded. Then [A]<F <rp n(“+), where \ = | F|.

Proof. Fix injections eg : f — & for each f < kT, and for X € F define
fx o [#F]* — K by
eg(min(X n [a, 8 if X nla,p)#J
fX(a,m::{ﬁ( (X 0 [, 8)) [ev. 8)

0 otherwise

Since xl®"1” =7 /<a"“+7 it suffices to show that X + fx has the property that
whenever Fy € F has cardinality , {fx | X € Fo} is unbounded. Let Fy < F
be a set of cardinality . Let @ < k1 be sufficiently large that {X\« | X € Fo}
is pairwise disjoint and let 8 > « be such that min(X\«a) < g for all X € Fy.
Then X — fx(«, ) is one-to-one and hence {fx | X € Fo} is unbounded in

s O

Kle
Remark 3.5. Any family F < k(¥ of functions different modulo bounde
induces a family of subsets of k™ almost disjoint modulo bounded of the same
cardinality. This is proven by transferring the graphs of the functions through
a bijection of kT x kT with k™. The other direction is also clear: any family
of functions different modulo bounded sets induces a family of almost disjoint
functions modulo bounded of the same cardinality.

Recall that the generalized bounding number, denoted by b, is the minimal
size of an unbounded family in (p*, <*). It is well known that u* < b, <2~

Corollary 3.6.

?i.e. for any distinct f,g € F, {a | f(a) = g(a)} is bounded in x.

10



1. [bﬁ+]<w <r k().
2. 28 = kT implies that k() s Tukey-top.

Proof. Both items use the previous remark. For , it is possible to recursively
define a strictly increasing chain of length b,.+ of functions increasing modulo
bounded. For (2), if 2¢ = x*, then for every a < k%, let 7, : P(a) — &+
be an injection. For every X < kT set fx(a) = mo(X na). Now if X # Y
then there is o < k™ such that for every 8 > o, X n 8 # Y n 8 and therefore
Ix(8) # fv (B). 0

Remark 3.7. It is impossible to prove in ZFC the existence of 2“+—many almost
disjoint subsets of k*. Indeed, Baumgartner [3] proved that consistently there
is no such family. In that paper Baumgartner also gives more assumptions
under which there are 2“+—many almost disjoint subsets of k%, and therefore
additional assumptions guaranteeing k() s Tukey-top.

Corollary 3.8.

1. (kM) <p k(D

2. k) = (kF)RT.
Proof. For , we have that £(*7) > [b,+]<" and therefore K*") >p k. It
follows that x(*") =p (k")) =1 (k7)%". The strict inequality follows from
the fact that ") is not x*-directed and fact is straightforward. [

Hence for example, since b,9 <p (w¥, <), then w** =7 b*1,0¢1. We do
not know whether w*? (for example) is provably Tukey-top in ZFC (see ques-

tion .

We now turn our attention to the relation between ultrafilters over w; and
the cofinal type of w*!. The following notation will be used throughout the
remainder of the paper. Fix a sequence & = {eg | f < wi) such that each
e : f — w is one-to-one. Define

Usm=1{Bewi| B <aorn<es(a)}

and for a partial function f :w; — w, set

Ui= () Uas-
aedom(f)

In what follows, there will be no risk of ambiguity and we will suppress the
superscript €.

Lemma 3.9. IfU is a uniform ultrafilter over wy, then there is an ag such that
foralla > ap and allnew, Uy, €U.

11



Proof. Let X be the set of all & < w; such that for some n, U, ¢ U. Define
g: X — wby g(a) = n if for Y-many B’s, eg(a) = n. This is always defined
since, given o € X and n with U, ¢ U,

wi\Ua,n = U {8>a]es(a) =k}

k<n

and hence one of these sets is in ¢/. One can also easily check that g : X — w
is one-to-one, and hence X is countable. O

Let I be an ideal over wy; and U an ultrafilter over wyi. Consider the state-
ment:
Vf:wl—wJHXeI* UereZ/[ ((T)I,Z/l)

This principle gives a sufficient condition for ¢/ to be above w** and will be used
in later parts of the paper.

Proposition 3.10. Let I be o-complete. Then ()1 implies (w*', <) <r U.

Proof. Arguing as in lemma we fix g : w; — wiy such that g7 1[{i}] e I+
for every i < w;. Let us describe an unbounded map from w** to Y. For each
frwr — w, let Xy e I* be aset such that Uyog)x, € U, which exists by ().
Define Uy := Ufog)1x,- Let F S w** be <-unbounded. Again, by replacing
F with a countable subset if necessary, we may assume F is countable. Let
§ < wy be such that {f(§) | f € F} is unbounded, and consider g~ *[{5}] € IT.
Set X := ({Xy | f € F}. Since I is o-complete, there is 6* € X n g~ [{d}],
hence {f(g(6*)) | f € F} is unbounded. Suppose towards a contradiction that
(WUys | f € F} € U, then by uniformity of U, it would contain some 3 > §*.
But then eg(6*) > (f o g)(6*) for all f € F, contrary to our choice of 6*. Thus

ﬂ{Uf|f€.7:}€U.
O

Using corollary [3.6] we immediately conclude:

Corollary 3.11. Assume 28t = Ny, and let I be a o-complete ideal. Any
uniform ultrafilter V satisfying (1)1,v is Tukey-top.

4. Isbell’s Question for Uncountable Cardinals

In this section, we consider the analogue of Isbell’s problem which was dis-
cussed in the introduction, concerning ultrafilters over uncountable cardinals.
Perhaps surprisingly, we will show that a positive answer to Isbell’s problem on
uncountable cardinals is witnessed by a fairly simple model, and the challenge
seems to be concentrated on constructing models with non-Tukey-top ultrafil-
ters.
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4.1. ZFC constructions

Isbell [31] in fact proved that there is a Tukey-top ultrafilter over every
infinite cardinal.

Proposition 4.1 (Isbell). For any infinite cardinal k, there is a uniform ultra-
filter U over k which is Tukey equivalent to [27]<%.

More precisely, Isbell constructed a maximal number of such ultrafilters using
independent families. In [9, Prop. 3.21-3.22], normal k-independent families
(due to Hayut [27]) were used to run a construction similar to Isbell’s, resulting
in Tukey-top ultrafilters which extend the club filter (see theorem below).
Recall that (A; | i < A) is called a normal k-independent family, if it is k-
independent and for any two disjoint subfamilies (A, | ¢ < k), (Ag, | i < k) <
(A; | i < A), the diagonal intersection A;<.(Aq,\Ag,) is a stationary subset of
K.

In contrast to standard k-independent families, the existence of a normal x-
independent family is not guaranteed by ZFC alone. For example [8, Proposition
4.2] , if {(k) holds, then there is a normal k-independent family of length 2*.

Theorem 4.2 (Benhamou-Dobrinen). Suppose that there is a normal k-independent
family of length 2%, and let p < K be a cardinal. Then there is a p-complete filter
Fitop extending the club filter such that any extension of Fj to an ultrafilter
1s p-Tukey-top.

ytop

Hence, if (k) holds, then there is a Tukey-top ultrafilter U over x which
extends the club filter. In particular, if V' = L then for every regular cardinal
k there is an ultrafilter over x which is Tukey-top and extends the club filter.
Also if k is a strongly compact cardinal, then there is a k-complete k-Tukey-top
ultrafilter extending the club filter.

Note that if k<" = &, then by Galvin’s theoremthe filter F},, cannot be
normal. Galvin’s theorem emphasizes that the construction of Fj, uses heav-
ier machinery than is needed, since normal independent families are primarily
designed to give rise to normal filters. Let us provide another construction that
removes the dependence on (k). For this we introduce the following notions.
Given a sequence X = (X, | a < A) of subsets of a cardinal k, a flip of X is
a sequence of the form X7 := <X1-J(l) | i € dom(o)), where o is a (non-empty)
partial function from A to 2, and for every i,

H\Xi e=1

If o : A — 2 is a total function, we say that X is a full flip. In this context,
it will be convenient to identify a sequence of sets with its range. Thus for
example we write () X7 for ({X7 | i e dom(c)}.

Definition 4.3. A family of sets (X, | i < A\) € P (k) is called a p-stationary
independent family if any finite Boolean combination of length < p of the family
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is stationary. That is, if for every partial o : A — 2 with |o| < p, ﬂX" is
stationary in k.

A normal k-independent family is a k-stationary independent family [S].
Also note that any flip of a p-stationary independent family is p-stationary
independent.

Proposition 4.4. Let p < k and A < 2% be cardinals and suppose that there
is a p-stationary independent family of subsets of k of size A. Then there is a
w-complete filter F' extending the club filter such that any extension of F to an
ultrafilter is (u, \)-Tukey-top.

Proof. Let {X; | i < A} be a y-stationary independent family of subsets of . Let
F be the p-complete filter generated by Cub, U{X; [ i < A} U{r\(;e; Xi) | I €
[A]#}. If we can show that F' is proper, then it clearly has the properties sought
for. It remains to see that the generating set above has the finite intersection
property. Let I € [A]<# and {I, | @ < 0} < [A]* where § < p. It suffices to

show that

) Xin ([ () X))

el a<6 jely
is stationary. Since all the I,,’s have size u, we can find j, € I,\I and simply
note that the set (;c; X; N [),p £\X,, is a stationary subset of the above
set. O

Finally, let us construct a p-stationary independent family of maximal size:

Proposition 4.5. Let k be a reqular uncountable cardinal such that k<* = k.
Then there is p-stationary independent family of 2%-many sets.

Proof. let (Ue | £ < k) be an enumeration of the clopen subsets of 2% in its
< p-topology’l where each element is repeated stationarily often. Note that
this enumeration is possible since k< = k. For any x € 2%, define I, = {{ € & |
x € Ug}. We now argue that {I, | = € 2} is u-stationary independent. Consider
any I, J € [27]<H such that I nJ = . Let I v J = {x, | & < 6}. Since there
are less than p-many z,, there is a set s € [k]* such that s nx; # s N x; for
all i # j < 6. Define Y = |J,.; Bz,s, where B s is the basic clopen set of all
x such that x n s = ¢. By the choice of s, z € Y iff z € I. Since Y is indexed
stationarily many times, for any £ such that Us =Y, { € I, iff x € I, and hence

5 € (ﬂzel Iﬂ?) a (ﬂng I§)7 as desired. 0

Corollary 4.6. Let k be a regular uncountable cardinal and p be any cardinal
such that k<M = k. Then there are 22" -many p- Tukey-top ultrafilters over k.

Since any regular cardinal satisfies k< = k, applying the above corollary
to 4 = w gives an answer to [8 Q. 5.4]. Also, note that K<+ = k is in fact
equivalent to the existence of a u-independent family of length k.

3Here we mean the usual product topology generated by the < p-supported product of the
discrete topology on 2.
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4.2. Consistency results

Let us start by settling the consistency of an affirmative answer to Isbell’s
question of whether all uniform ultrafilters are Tukey-top in the case of cardinals
Kk > w. We say that the sequence X of subsets of x has the ﬂzppmg w-bounded
intersection property, if for any flip X7 where |o| = p, | X < k.

Proposition 4.7. Suppose that there is a sequence of subsets of k of length A
with the flipping p-bounded intersection property. Then every uniform ultrafilter
U over k is (u, A)-Tukey-top.

Proof. Given any ultrafilter U, there is a full flip X7 such that X° < U{. The
rest follows from uniformity. O

Theorem 4.8. Let w < p = u~* < kK < A be cardinals, P = Add(u, \), and
G < P be any V -generic filter. Then in V[G] there is a sequence (X, | @ < X\) <
P (k) such that for every flip X7 with |o| = p, | (Nics X7| < p. In particular, if
cf(k) > p, then X has the flipping pt-bounded intersectwn property.

Proof. Observe that Add(u, A\) is forcing equivalent to the poset of all partial
functions p : K x A — 2 such that |dom(p)| < u. If G is generic for this poset
and 7 € A, define

Xi={acw |IpeqG (pi,a) =1)}.

Let us prove that (X; | i < A) has the flipping p-bounded intersection property.
Suppose towards a contradiction that o : A — 2 is a partial function, |o| = p
and | X?| > p*. Back in V, let & be a name for ¢ and use the p*-chain
condition, to find I € V, |I| = p such that dom(c) < I. Let p € G be a

condition forcing that dom(¢) < I and that | () X?| > i*. Let 6 be sufficiently
large and M < Hy be a model of size u, closed under < p-sequences, and such
that p,d,]P,X,I,u € M, noting that p +1 € M. It is easy to check that
P~ M = Add(pu, A n M). Next, find o € kK\M and p’ < p a condition such that

P’ H—deﬂ)'?"’.

Let D < Add(u, ) be the set of all g such that for some i € I\ Supp(p’), and
€=0,1,qI-i¢edom(¢) A 5(i) = e. Then D is dense below p as Supp(p’) has
size < p while p forces || = i. Note that D is definable in M as I\ Supp(p’) =
I\N(I n Supp(p’)) and I n Supp(p’) € M as M is closed under <p-sequences.
Fix a maximal antichain A < D, such that A € M. By the chain condition,
A € M and there is p” < p, p” € A such that p’ and p” are compatible. Fix i, ¢
witnessing that p” € D. Since i ¢ Supp(p’) and o ¢ M, (i,a) ¢ dom(p’ U p").
Define ¢ = p’ U p” U {{{i,a),1 — €)}. Then q < p’ but also ¢ - a ¢ X7 and
1 € dom &, contradiction. O

The case jt = w, £ = w; and A = 281 is the one of primary interest—this is
the poset to add 2% Cohen reals (as a finite support product). The proof can
be summarized as follows, making clear that the conclusion carries over to the
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standard poset to add 2% random reals. Let {X; | i € A} be the generic subsets
of wy. First, if I < A is countably infinite and in the ground model, then both
(Nie; Xi and (),.; w1\X; are empty by genericity. Second, if I is a countably
infinite set in the generic extension, then there is an o < w; such that I is in
the intermediate generic extension by {X; n« | ¢ € A\}. Since {X;\a | i € A}
is generic over this intermediate extension, by the previous observation (),c; X;
and (),.; w1\X; are contained in . Since any flip will be constant on a countably
infinite set, the desired conclusion follows.

Corollary 4.9. In any generic extension by Add(w,2%1) or by the homogeneous
measure algebra of character 281, every uniform ultrafilter over wy is Tukey-top.

Remark 4.10. This result was obtained independently by Jorge Chapital [16].
The results of [2] also yield the following

Corollary 4.11. In the Abraham-Shelah model from [2], the club filter over w;
1s wy - Tukey-top, and moreover, every ultrafilter over wy is Tukey-top.

Proof. Assume GCH and let S denote the Abraham-Shelah poset. Abraham
and Shelah in [2] prove that Add(w,ws) is a regular suborder of S and that the
quotient is o-distributive, which is to say that the any w-sequence of ordinals in
VS belongs already to VAdd(w.w2)  Hence the mutually-generic sequence of Co-
hen reals from the previous proof persists as a witness for any uniform ultrafilter
over wy being Tukey-top. O

Recall that in the Cancino and Zapletal model [I4] where every ultrafilter
over w is Tukey-top, 2% = 2% = Ry,

Theorem 4.12. Suppose that every ultrafilter over w is Tukey-top and that
2% = 281 Then every uniform ultrafilter over wy is Tukey-top.

Proof. Let U be any uniform ultrafilter over wy. It is well known that every
uniform ultrafilter is w-decomposable, namely, there is a function f : w; — w
such that W = f,(U) is a uniform ultrafilter over w. Since W <px U, we also
have W <1 U, and since every ultrafilter over w is Tukey-top we have:

[2N1]<w = [2N°]<w <r W<rU.
Hence U is Tukey-top. O

Remark 4.13. It was proposed (see for example [28]) that a possible solution
to the Katowice problem [46] (whether it is consistent that 42(w;)/fin and
P (w)/fin can consistently be isomorphic) is to prove in ZFC that there is an
ultrafilter over w that is not Tukey-equivalent to any uniform ultrafilter over
w1. This would give a negative answer to the problem. In the above model, this
strategy cannot succeed. Still, Z(w)/fin =~ £ (w)/fin has a number of nontrivial
consequences and it is still conceivable that a combination of these consequences
implies that there is an ultrafilter over w which is not Tukey-equivalent to any
uniform ultrafilter over wy.
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Next, we consider whether CH implies the existence of a non-Tukey-top
ultrafilter over w;. First we observe that something slightly weaker than a
flipping family with the bounded intersection property is needed:

Proposition 4.14. Suppose that there is a family (A, | & < X\ S k such that
whenever I € [A]*, both (),c; Aa and [\ c; wi\Aa are bounded in k. Then every
uniform ultrafilter over k is (u, \)-Tukey-top.

Proof. Given any uniform ultrafilter & over a cardinal , for each o < A, either
A, € U or kK\A, € U. There is J € [A]* such that either {A, | a € J} € U
or {K\As | @ € J} € U. In either case, the assumption implies that U is
(1, A)-Tukey-top. O

Remark 4.15. The existence of (A, | @« < A) € & such that whenever I € [A]#
both (,c; Aa and [,c; ©\Aa are bounded in &, is equivalent to the negative

partition relation (2) + (‘;);1, there exists ¢ : A x kK — 2 such that there is no

homogeneous rectangle (i.e. a set of the form A x B on which ¢ takes just one
value), where A € [A]* and B € []".

Prikry [47] showed the consistency of GCH with (zf) + (U‘j’l);l Hence, we
establish the following;:

Corollary 4.16. It is consistent that GCH holds and that every uniform ultra-
filter over wq is Tukey-top.

Corollary 4.17. If (:?) + (“

wl);’l holds, then any cardinal-preserving o-closed
forcing will preserve this.

Proof. Suppose P is o-closed and ¢ € V' witnesses the negative partition relation.
Suppose that A € V[G] is any countably infinite subset of ws. Then A€ V. If
B € V[G] is any subset of wy such that ¢[A x B] = {i}, then B < C := {a <
wy | Ya € A, c¢(a,a) = i}. Clearly, C' € V, and since c[A x C] = {i}, C must
also be countable. Hence, B is countable. O

5. Large Cardinal Ideals and Non-Tukey-Top Ultrafilters

If k carries a uniform o-complete ultrafilter (e.g. if x is measurable) then
clearly this ultrafilter is non-Tukey-top. Moreover, any p-point ultrafilter (in
which case either kK = w or else x has to be measurable) will be a non-x-
Tukey-top ultrafilter. Since, for example, there are no p-points nor o-complete
ultrafilters over wq, it is unclear whether there can be a non-w;-Tukey-top, or
even a non Tukey-top, ultrafilter over wy. In this subsection, we prove that such
ultrafilters consistently exist over wj.

Proposition 5.1. Suppose that I is a o-complete (", u)-saturated ideal over
k. Then the forcing 2 (k)/I adds a V -ultrafilter which is not (u, s™)-Tukey-top.
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Proof. Let G be the generic ultrafilter. Suppose toward a contradiction that
G is p-Tukey-top. Let (X; | i < %) witness that G is p-Tukey-top. Let
(X; | i < &™) be names and let Y € Z(k)/I be a condition such that YV |-
(X;|i<kt)isa witness. For each i < % let ¥; < Y be such that for
some Y; € Z,;, Y; IF X; = Z;. Consider in V the sequence ;| i < kM) by
the saturation assumption there is a = € [kT]* such that {Y; | ¢ € =) has a
lower bound in #(k)/I. By the o-completeness of I, Y* = (.2 Y; € Z(x)/I.
However, Y* forces that (X; | i < x*) does not witness that G is Tukey-top,
contradiction. O

Of course, the ultrafilter from the previous proposition is not going to be an
ultrafilter in the generic extension. It is therefore natural to ask whether it is
possible to construct a non-Tukey-top ultrafilter from an (ws,ws,w)-saturated
ideal over wy or from other saturation assumptions.

Corollary 5.2. It is consistent that there is an wo-saturated ideal and every
uniform ultrafilter over wy is Tukey-top.

Proof. Laver [44] showed that starting with a model where there is such an ideal
I and C'H holds, upon adding ws-many Cohen reals, the filter generated by I
has the same saturation property. As we have seen in [4.9] in this model every
uniform ultrafilter over w; is Tukey-top. O

Let (#) denote the assumption:
{ + 3 a normal ideal over w; which is wi-dense

Woodin proved that (#) is consistent relative to determinacy assumptions [60)].

Theorem 5.3. Under (%) there is a weakly normal non-ws - Tukey-top uniform
ultrafilter over wy.

Proof. By Laver [44] there is an ultrafilter U which is generated by I u {A, |
a < w1}, where I is a normal filter and each A, < w;. That is, for any X € U,
there is @ < wy such that A, \X € I. We claim that U is not w;-Tukey-top (and
therefore also not Tukey-top). Let (X, | @« < wa)y € U. Then for every a < ws
there is 8 < w; such that Ag\X, € I. Fix 8* and J € [w2]“? such that for
every a € J, By := Agx\X, € I. The sequence (B, | a € J) is a sequence of
wo-many sets in the normal ideal I. Note that by ¢, CH holds and therefore we
can apply Galvin’s theorem and obtain w;-many of the B,’s for which the
union is in 1. Choose Jy € [J]“* such that Ags\(N,es, Xa) = Uaey, Bo € 1.

aeJ o
Since Agx € U, (,cs. Xa € U as desired. ’ O

aedy

Huberich [30] removed the diamond assumption and constructed a similar
weakly normal ultrafilter from CH and an w;-dense ideal over w;. More precisely,
Huberich showed in [30, Corollary 11] that from a normal v*-dense ideal I over
vt for v regular, there is an ultrafilter U 2 I'* over vt which is generated by
I* U{X, | @ < 2%}, Let us use it to deduce that there is a non-Tukey-top
ultrafilter from the weakening of () in which < is replaced by the weak diamond
principle of Devlin and Shelah [2T], which is equivalent to 2% < 2%1.
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Theorem 5.4. Suppose that there is a normal wi-dense ideal over wy and that
280 < 2% Then there is a non-(wy,2** )-Tukey-top ultrafilter over w;.

Proof. By Huberich, let U be an ultrafilter generated by I U {X, | a < 2%},
Given 28 -many sets (Ag | B < 2%1), there is J € [2?*1](2%))r such that for some
a* < 2% X, «\Ap € I for each B € J. By Garti’s generalization of Galvin’s
theorem [26, Thm 1.1], there is J* € [J]** such that (J;c 5 (Xox\Aj) € 1. We

conclude that (., 4; € U. O

Note that by Piikry and Jech [33] Thm. 7.2.1(a)], if w; carries a non-regular
ultrafilter and 2%¢ < 281 then necessarily 2% > R, .

5.1. Non-regular and indecomposable ultrafilters

Since non-(u, \)-regularity is a stronger form of non-(u, \)-Tukey-top, it is
tempting to ask whether other non-regular ultrafilters over &, specifically non-
(w, k)-regular, can ever be Tukey-top. A related notion to that of non-regularity
is the notion of indecomposability.

Definition 5.5. An ultrafilter U over & is v-decomposable if there is a function
f : Kk — v such that for every X € [v]<¥, f~1(X) ¢ U. If there is no such
function, we say that U is v-indecomposible

Clearly, U being v-decomposable is equivalent to U being RK-above a uni-
form ultrafilter over v.

Fact 5.6. If U is v-indecomposable, then U is not (w, v)-regular.

Clearly, if U is w-indecomposable, the U is o-complete and therefore non-
Tukey-top. However, for v > w the answer in general is negative:

Proposition 5.7. Assume CH. Let U be a uniform wi-indecomposable ultra-
filter over any cardinal & (even singular). Then after forcing with Add(w,2"),
U can be extended to a Tukey-top wi-indecomposable ultrafilter over k.

Proof. Note that in this case cf(k) > wy, since any singular cardinal and any
uniform ultrafilter over it must be cf(k)-decomposable. Theorem applies
to show that in the extension, every uniform ultrafilter over s is Tukey-top.
We claim that U generates a uniform w;-indecomposable filter in V[G]. This
is enough since any extension of this filter to a uniform ultrafilter will remain
wi-indecomposable and has to be Tukey-top. Indeed, let f be a name and p a
condition forcing f : k — w;. We will prove that there is a set X € U such that p
forces f} X is bounded. By the c.c.c. we can find in V, a function F : k — [w1]*
such that p forces that f(a) € F(a) for every a < k. By CH in the ground
model, F' is essentially a function to w;, so by wi-indecomposability, there a
set X € U such that | F[X] is bounded in w;. Hence p forces that f1X is
bounded. O

Another form of non-regularity is weak normality. As we have seen in the
previous section, it is possible that a weakly normal ultrafilter is non-Tukey-
top. It is natural to wonder if being non-Tukey-top just a consequence of weak
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normality. This seems plausible in light of Galvin’s theorem We will now
show that this is not the case if k > w; (see question [7.5)).

Theorem 5.8. Suppose that U is a weakly normal ultrafilter over a regular
K > w1, then after forcing with Add(w,2%), U generates a weakly normal filter
which can be extended to a weakly normal ultrafilter which is Tukey-top.

Proof. Let f : k — K be regressive in V[G]. Again, let F : k — [K]* cover
f, and we may assume that F(«) € « (as f is regressive). Since U is weakly
normal, Xo = {«a | cf(a) > w} € U. Hence F(«) is bounded in a. By weak
normality of U, there are 8 < k and X = Xo in U such that for every a € X,
F(a) € . Then 3 bounds f|X. Every extension of a weakly normal filter is a
weakly normal ultrafilter by [37, Prop. 1.2]. O

5.2. A remark following Usuba

As we have seen, every ultrafilter over w; is w-decomposable and therefore
every ultrafilter over w; is RK-above an ultrafilter over w. This raises the
question of whether or not there can be two cardinals A\ < k and a uniform
ultrafilter U, over k, which is not Tukey-above any uniform ultrafilter over .
Recently, Usuba [59] raised a similar question regarding the ultrafilter number
and used both new and existing results regarding indecomposable ultrafilters
to investigate the failure of monotonicity of the ultrafilter number function.
The common theme, which we are next going to exploit in order to translate
Usuba’s results to the terminology of our investigation of the Tukey order, is
the following:

Proposition 5.9. Suppose A\ < k and there is a uniform ultrafilter U, over
K such that for every uniform ultrafilter Uy over X\, Uy €1 Ux. Then Uy is
A-indecomposable.

Proof. 1f it is A-decomposable then it RK-projects (and therefore Tukey reduces)
to a uniform ultrafilter over A. O

Let us denote by TU (A, k) the statement that every uniform ultrafilter over
k is Tukey-above a uniform ultrafilter over A\. The above proposition is saying
that TU (A, k) implies that there are no A-indecomposable uniform ultrafilters
over K.

There are ZFC restrictions on the existence of indecomposable ultrafilters.
These will be used in the following corollary:

Corollary 5.10. 1. For any cardinal k, TU (w, k) if and only if k does not
carry a uniform o-complete ultrafilter.

2. For any cardinal &, TU (cf(k), k).
3. For any regular cardinal x, TU (k, k™).

4. For any singular cardinal k of cofinality w such that k™ does not carry a
uniform o-complete ultrafilter, TU (k,x™) holds.
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5. If TU (k, k™) fails, then there is a tail of regular cardinals p < k such that
TU (u, k%) holds for each p in this tail.

Proof. Only does not directly follow from Usuba’s paper [59]. If U is not
o-complete, then it is Tukey-above an ultrafilter over w. If it is o-complete,
then it cannot be above any ultrafilter over w, as follows from an easy argument
using unbounded functions. O

In [59], the author uses Raghavan and Shelah’s [49] to get the failure of mono-
tonicity at many pairs of cardinals. Note that if u(x) < u(\) then =TU(\, k).
In particular, we have the following consistency results which follow directly
from [59):

Corollary 5.11. 1. Starting from a measurable cardinal K, forcing with Add(w, K1)
yields a model of =TU (k,w1).

2. Starting from a supercompact cardinal, it is consistent that after forcing
with Add(w, Ry, ), =TU (w1, We11)-

3. After Prikry (U)x Add(w, k*“1), & is singular of cofinality w and —TU (k,w:).

The list above is by no means complete. There are many other results that
could be derived from known ones and questions that could be asked, but as our
focus is mostly on ultrafilters over wy, we leave this line of research unattended.

6. The Ultrafilter U(T)

In [56], Todorcevic defined a filter U(T') associated to a coherent A-tree T,
and showed that if the countable chain condition is productive, then U(T) is an

ultrafilter. He also established a number of additional properties of ¢ (T") under
MA,,, and PFA (w;).

Theorem 6.1 ([56]). Assume PFA(wy). U(T) is not RK-isomorphic to an
ultrafilter over wy which extends the club filter.

Theorem 6.2 ([50]). Assume PFA(w1). If S and T are two coherent A-trees,
then U(S) and U(T') are RK-isomorphic.

Theorem 6.3 ([57]). Assume MA,,. If T is a coherent A-tree and f :w; — w
is not constant on any set in U(T), then foUU(T) is a selective ultrafilter.

In this section we will add to this analysis, proving the following results.

Theorem 6.4. Assume PFA(w1). For any coherent A-tree T, [wa]<% <7 U(T).
In particular, PFA implies U(T) is Tukey-top.

Theorem 6.5. Assume PFA(w). If T is a coherent A-tree and [ : wy — wy,
then there is a set U € U(T') such that either f is one-to-one on U or f is
bounded on U.
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In other words, PFA(w;) implies that for any coherent A-tree T, U(T) is
<grk-minimal with respect to being a uniform ultrafilter over wy. It was previ-
ously known that the cardinal arithmetic assumption 2%t = Ry (which follows
from PFA) already yields many RK-minimal uniform ultrafilters over w; [I8]
Thm. 9.13]; the point is that U(T) is a canonical example under suitable as-
sumptions.

It is known that a uniform ultrafilter over w; is weakly normal if and only
if it extends the club filter and is <grk-minimal with respect to being uniform.
Curiously enough, while Laver has shown that MA,,, implies there are no weakly
normal ultrafilters over w; (see theorem[2.12)), it consistent with MA,,, that U(T)
has either of these properties.

Theorem 6.6. It is consistent with MA,,, that there is a coherent A-tree T
such that U(T) extends the club filter.

Furthermore, since theorem readily implies that any two projections of
U(T) to w are RK-isomorphic, theorem [6.5] yields the following corollary.

Corollary 6.7. Assume PFA(wy). If T is a coherent A-tree, U(T) has a finest
partition.

The consistent existence of ultrafilters over w; with a finest partition was
previously demonstrated by Kanamori [39, p. 329] using { and the existence of
an wi-dense ideal over w;.

We now recall the definitions associated to U(T). A coherent A-tree is a
subset T of w<“? such that:

e T is uncountable and closed under initial segments;
e if s, € T have the same height, then s =* t;
e there is no b : w; — w such that for all @« < wy, bla e T.

Recall that an A-tree T is special if there is a function ¢ : T' — w such that
¢~!(n) is an antichain for each n. MA,, (and hence PFA(w;)) implies that all
A-trees are special [5]. Given a coherent A-tree T', define

UT) :={U Cw; | FAe [T]** A(A) c U}.
Here
A(s,t) := min{ € dom(s) n dom(t) : s(§) # t(&)}

and A(A) is the set of all A(s,?) such that s,t € A are incomparable. Most of
the literature around U(T') for coherent A-trees assumes that T has no Souslin
subtrees—a condition which is equivalent to them being Lipschitz (see [50]
1.10]); clearly special A-trees have no Souslin subtrees.
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6.1. The Tukey-type of U(T)
We now prove theorem Recall the definition of Uf from section

where f is a partial function from w; — w:
Uj = Usof(a)
aedom(f)

where B
Upni={Bew [ (B<a)v (eg(a) =n)}

and {eg | B € wy) is any sequence such that each eg : § — w is an injection. In
what follows € will be fixed and we will suppress it as a superscript for ease of
reading.

Lemma 6.8. Assume PFA(w1). For any coherent A-tree T < w=“! and any
[ w1 — w, there is a club C < wy such that Usc is in U(T).

Proof. Let T and f be given and recall that 7" must be special under our as-
sumption. Let ¢ : T — w satisfy that ¢~!(n) is an antichain for each n € w. By
proposition there is a least ordinal oy < wy such that for all o > oy and all
n € w, Uyn € U(T). Define Q to consist of all tuples ¢ = (4,, Cy, O4) such that:

1. A, = T is a finite antichain;

2. O4 € wy is a countable clopen set containing [0, ag);

3. Cy € wi\Oy is finite;

4. if s # t are in Ay and o € Cy with a < := A(s,t), then f(a) < eg(a).

We order @ by coordinatewise reverse inclusion. A countable elementary sub-
model of H((2%1)*) which has T, {es | B € w1} and f as elements will be referred
to as a suitable model for Q.

Claim 6.9. If M is a suitable model for Q, g€ Q and M nw; € Cy, then q is
(M, Q)-generic.

Proof. Set 6 := M nw; and let D < @ be dense open and in M with g € D. It
suffices to find an » € M n D such that r is compatible with ¢. Let 6 < § be
sufficiently large that:

e O,NdC;
{ht(s) | se Ag} nd S 0;

if s,t € Ag with A(s,t) < 6, then (&) = (£) for all § < & < 4 (in particular
A(s,t) < 9);

Condc 5;
if B e A(A,)\S, then for all £ € (4,0),

ep(§) = max{f(v) | v € C4\0}.
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If » € D, define n, := |C,\d| and let 67 be the i*"-least element of C,\d for
i <n,. Lett] (i <m,) enumerate

{s1d5 | s € A, and ht(s) = g}

in <jex-increasing order. Set m := m, and n := n, and let X < D consist of all
r such that:

e m, =m and both ¢(s!) = ¢(s?) and s7 5 = s! 1§ for all i < m;
e n, =nand f(67) = f(6]) for each i < ngy;

o {se A, |ht(s) <d5} ={se A, | ht(s) < &¢};

e Cyndl=Crndp.

We will eventually select an r from X n M which is compatible with ¢—i.e.
such that 7 := (4, U A,,Cq U C;,04 U O,) is a condition. In fact, many of
the requirements necessary to be a member of () are automatically met by 7
just by virtue of r being in X n M. First observe that if r € X n M, then
max(0,) < 6 = ¢¢ and hence C, U C, is disjoint from O, U O,. It is also
true that » € X n M implies that A is an antichain. To see this, suppose
that t € A,\A4, and ¢ € A,\A,. Notice that it must be that ht(t) > 63 and
ht(t') = 6f. Let 4,i" < m be such that ¢[d] = s! and ¢/ 6] = s7,. If i # i, then
since
Si10 =8I # sh1d =si 16

it must be that s} and s}, are incompatible. If ¢ = ', then since ¢(s]) = ¢(s?)

and s} # s? (since for instance si € M and ht(s!) = 6 ¢ M), si and s}, are
incompatible. Since ¢ extends s and ¢’ extends s!, t and ¢’ are incompatible.

Next suppose that 8 is in A(A7) = A(4,UA,). If e A(A,), then B <6 =
d¢. In particular if a € Cr with a < 8, a € C,. Thus f(a) < eg(«) by virtue
of r being a condition. If § € A(A4,) and a € C7\Cy, let i < n be such that
a = 0. Observe that f(a) = f(6I) = f(67). Since a € (4,0), it follows that
es(a) > f(a).

The remaining possibility is that 8 € A(4, U A;)\(A(A4,) U A(A,))— that
is B = A(s], sT) for some i < m. Observe that since for all j <m

and since for all j <m

(
(8, 05) = 5519, dp),

it follows that 8 = A(s], s]) = A(s],s}) for all 4, j < m. Thus we need to select
an 7 such that if 8 = A(s{, sh), then for all a € C. N 4§, f(a) < eg(a). Notice

that since ag € O,,, ag < min C,., and therefore

U= [Uafo) | € Cr}
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isin U(T). Set Y := {sf; | » € X}, noting that Y < T is an antichain and s is
in Y. Furthermore Y is in M since it is definable from parameters in M. Let
Z be the set of all s € Y such that for all 8 # s in Y, A(s,s’) ¢ U. Since Z
is definable from parameters in M, Z is in M. If s were in Z, then Z would
have uncountable A(Z) and U would contain two disjoint sets in ¢ (7T), which
contradicts that U(7T') is a filter. Thus sg ¢ Z and hence there is an r € Z such
that A(s{, si) € U. By our above observations, 7 = (4, U 4,,Cy, U C,,0, U O,.)
is a condition witnessing that ¢ is compatible with r € D n M as desired. O

Claim 6.10. Q is proper and the following sets are dense below some pg € @
for each £ € wy:

e {geQ[¢& <maxCy},
o {geQ]& <max{ht(s)|se A,}}.

Proof. To see that @ is proper, let M be suitable for @), and p e @ n M. Define
q=(4,,C, u{d},0,), where 6 = M nwy. By claim q is a (M, Q)-generic
condition. Since p and M were arbitrary, @) is proper.

Next suppose that M is suitable for @ and let t € T\M. Define py :=
({t}, {0}, &), where § = M N w;. By claim[6.9] po is (M, Q)-generic. It follows
that po forces that M[G n M] is elementary in H((2%*)")[G] and that | J{4, |
g€ G} and | J{C, | ¢ € G} are both not contained in M[G ~ M] and hence that
both are uncountable. It follows that for any £ € wy, {g € Q | £ < maxC,} and
{g e Q| ¢ <max{ht(s) | se A,}} are dense below py. O

Claim 6.11. For all{ ewy, D:={qe Q| {e€ Cyu O,} is dense.

Proof. Toward this end, let p € @ be given and observe that if { € C,, then
pe D. If £ ¢ Cy, then there is a & < £ such that (§,£] n C; = J. In this case
q:=(Ap,Cp,0p v (£,€]) is an extension of p in D as desired. O

Let G € @ be a filter containing py and meeting the dense sets listed in
claims and [6.11] for each & < wy. Define A := {4, | ¢ € G}, C = {C |
g€ G}, and O := {0, | ¢ € G}. Clearly A < T is an uncountable antichain and
C' € wq is uncountable. Since O is open and is the complement of C, C is club.
Finally, set

U:={A(s,t) | s #t and s,t € A}.

By definition, U € U(T). Moreover, if a € C and 8 = A(s,t) € U, then
there must be some ¢ € G such that o € C; and s,t € A,. Thus f(a) < eg(a).
Consequently we have shown that U < Uy;¢ and hence that Uy isinU(T). O

Recall that for an ultrafilter V (f)ns,, v is the following statement:
Vf e w*3Cy club such that Ugc, € V
The previous lemma asserts that under PFA, every ultrafilter of the form U(T)
satisfies (f)n Sy U(T)- Theoremthen follows immediately from corollary
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6.2. U(T) is RK-minimal

We now turn to the proof of theorem
Proof. Let T be a special coherent A-tree and f : w; — w; be given. Recall
that MA,,, implies U(T) is an ultrafilter and that T is special. Fix a function
¢ : T — w such that ¢~ !(n) is an antichain for all n. If there is an a < w; such

that {§ € w1 | f(0) < a} is in U(T), then we are finished. Thus we may assume
that for all o < wy

{dew |a< f(O)}eU(T).
Define @ to be the set of all pairs ¢ = (Eq, A4) such that:
1. Eq € w is finite;
2. A, € T is a finite antichain such that flA(A,) is one-to-one;
3. ifve E, and s # t € A, are such that v < A(s,t), then v < f(A(s, ).

Claim 6.12. If M is a countable elementary submodel of H(ws) with T, f,c € M
and g € Q is such that M nwy € Ey, then q is (M, Q)-generic. In particular Q
1S proper.

Proof. Let g be given and D < ) be a dense set in M. We need to find a
p € D n M such that p is compatible with ¢q. By extending ¢ if necessary, we
may assume that ¢ € D. Set v := M n w; and let v/ < v be sufficiently large
that:

o if § </, f(0) <V;
o if se A, n M, ht(s) < v/;
o if s,t e A\M, then s(§) = t(&) for all v/ <€ < v

Since f is not bounded on any set in U(7T) and since U(T') is an ultrafilter,
there is an uncountable antichain X < T such that if s,¢ € X are distinct, then
f(A(s,t)) > /. Fix a function p — ¢, in M with domain D such that for all
p, t, € T has height min(E,\v’) and ¢, is extended by an element of X. Let
V" < v be sufficiently large that v/ < v” and if £ < v and ¢,(§) # s(§) for some
se€ Ay, then £ <.

Let D’ consist of those elements p of D such that:

o |E,| = |E,| and there is a (necessarily unique) v, € E,, such that v,nE, =

vg N Eg and V" < vy,

o [A,| =44, {s€ A, | ht(s) <vp} ={se Ay | ht(s) < v}, and
{slv" | (s € Ap) A (ht(s) > vp)} = {sIv" | (s € Ag) A (ht(s) = vg)};
o if se A, and ht(s) > v, then whenever 1" < & <1, s(§) = t,(£);

o s(tp) =s(ty) and t, V" = t, 1V";
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Observe that v, = v, ¢ € D', and that D’ is definable from the parameters
E,nvy, {se A, | ht(s) <y}, {s!V" | (s € Ay) A (ht(s) = v,)}, and ¢, 10" which
are each in M. Thus D' € M.

We claim that any element p of D’ n M is compatible with ¢. It suffices
to show that r := (E, u E;, A, U A,) is a condition in Q. First observe that
since ¢(t,) = ¢(t4) and ht(¢,) < v = ht(t,), ¢, is incompatible with t,; let
0 = Altp,ty). If s e A\A, and s’ € A\A,, then by definition of D" and the
fact that p € D’ n M, we know that v” < v, < ht(s) < v < ht(s’). Since
tplv" = t V", it follows that v” < 6 < v, < v and consequently s(§) =
t,(0) # t4(8) = §'(d). In particular, s and s’ are incompatible. Furthermore, if
A(s,s') ¢ A(Ap), then again by definition of D’, it must be that A(s,s’) = v".
Since s agrees with ¢, on [v”,d) and s’ agrees with ¢, on [v”,0), it follows
that A(s,s’) = A(tp,ty) = 6. Summarizing, we have shown that A, u A, is
an antichain and A(4, u 4;) = A(4,) v A(A,) u {d}. Notice that by this
argument, if pe D', A(A4,)\v' = A(4,)\vp.

In order to show that r is a condition, it remains to show that f is one-to-one
when restricted to A(A,). Observe that A(A4,) n v/ = A(A,) n v/ and that

A(Ap) NV <V <6<, A4V <v < A(A)\V.

Also, v/, v,, and v are closed under f. Additionally, by virtue of p being
a condition in @, if &' € A(A4,)\v/, f(§') = v,. Similarly if ¢’ € A(A4y)\V,
f(¢") = v. It follows that f is one-to-one when restricted to A(A,) U A(A,).
Finally, since 6 € A(X) and v, is f-closed, v/ < f(d) < vp. It follows that f is
one-to-one on A(A4,) = A(4,) u A(A,) U {6} as well. O

Claim 6.13. There is a condition q € Q which forces that A := | J{A, | p € G}
is an uncountable antichain such that f}A(A) is one-to-one.

Proof. Since it is forced that A is a directed union of antichains, it is forced to
be an antichain. Similarly, it is forced that flA(A) is one-to-one. Let M be a
countable elementary submodel of a sufficiently large Hy such that T, f,¢ € M
and let t € T\M. Since ¢ = ({M nwi}, &, {t}), ¢ is (M, Q)-generic by claim[6.12]
Because ¢ forces M|[G] is elementary in H(0)[G], it follows that ¢ forces A and
E are uncountable. O

To finish the proof of theorem let ¢ force that A is uncountable and D¢
consist of those extensions p of g such that A, contains an element of height at
least £&. By claim each D¢ is dense below ¢. By PFA(wy), there is a filter
G which intersects Dg for each € wi. If A =[] 5 Ap, then A(A) is in U(T)
and f is one-to-one on A(A). O

6.3. U(T) can extend the club filter

Our next goal is to prove the following theorem from which theorem
follows. We will often need to refer to U(T") in generic extension for a given
T. In all cases, U(T') will be interpreted in the generic extension and we add a
“dot” to emphasize this. Thus U(T) is the name for the filter U(T') computed
in the generic extension for a coherent tree T' from the ground model.
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Theorem 6.14. There is a_c.c.c. poset which forces MA,,, and “there is a
coherent A-tree T such that U(T) extends the club filter.”

Lemma 6.15. Suppose that T is a coherent Souslin tree such that every element
has at least two immediate successors. There is a c.c.c. poset which forces “T
is special” and, for all uncountable X < wy, forces “X e U(T)*.”

Remark 6.16. In particular, since every club subset of w; in a c.c.c. forging
extension contains a ground model club, the poset in lemma forces U(T) N
NS, =dJ.

Proof. Let T be given and let A be the finite-support countable power of the
poset of all finite antichains of T—this is the standard c.c.c. poset to specialize
T. Thus it suffices to show that if X < w; is uncountable, A forces X eU(T)*.
Toward this end, let X < w; be given and let A be an A-name such that p € A
forces A is uncountable subset of 7. For each & € wy, let pe be an extension of
p and t¢ be an element of T of height at least & such that p¢ I+ ¢ € A. For each
limit ordinal &, let 7(§) < £ be such that:

e if i € dom(pe) and s € pe(i) has height less than &, it has height less than
r(&);

o if i € dom(pe) and s € pe(i) has height at least &, then s(n) = t¢(n)
whenever r(§) < n < &.

By the pressing-down lemma there is a stationary set = € w; such that r is
constantly ¢ on =. By further refining = if necessary, we may assume that
n := dom(pg) does not depend on ¢ and for each i < n, the set of elements
of pe(i) of height less than ¢ does not depend on &. Observe that if ¢¢]¢ is
incompatible with t¢ €', then pe (i) U pe(2) is an antichain for all i < n and
hence pe is compatible with pes. Since T is Souslin, the downward closure of
{te | £ € 2} contains a cone in T'. In particular there are £ # ¢’ in = such that
te and te are incompatible and A(te,ter) is in X. It follows that pe and pe are
compatible and any common extension forces A(te,ter) € A(A) N X. O

Definition 6.17. Let T' be a coherent special A-tree. For X < wq, Q7 x is
the poset consisting of finite antichains ¢ € T such that A(q) € X, ordered by
reverse inclusion. If 7T is clear from context, we will write Q) x.

Lemma 6.18 (|56l rmk. 4.3]). Let T be a coherent special A-tree. For X < wy,
Qx 18 c.c.c. if and only if X e U(T)T.

The next lemma is essentially due to Todorcevic; see Lemmas 1.3 and 1.9 of
[56] as well as their proofs.

Lemma 6.19. Suppose T is a special coherent A-tree. If {qe | £ € w1} is an
uncountable family of finite subsets of T and te € T has height at least &, then
there is an uncountable Z € w1 such that for all £ #ne =,

A(ge v ay) = Alge) v Algy) v {Alte, )}
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Lemma 6.20. Let T be a coherent special A-tree. For Xg,...,X,_1 S w1,
[1,2, @x, is c.c.c. if and only if (,_,, Xi e U(T)™.
Proof. Assume first that [[,_ Qx, is c.c.c.. It follows that there is a g €
[[;,-,, @x, which forces that A:={teT| ({t},....{t}) € G} is uncountable.
Since every condition forces A(A) S MNien X;, it follows that ¢ forces (,_ X, €
U(T). Because membership in U(T) is upwards absolute and since U(T) is a
filter in all generic extensions in which 7' remains uncountable, it follows that
wi\[Ni=,, Xi ¢ U(T) or, equivalently, that (,_,, X; e U(T)™.

Now consider the converse and assume ();_,, X; € U(T)". For each & € wy, fix
te € T of height £. Consider a collection {(qg, cey qg‘_l) E<wit <[, @x.-
By n applications of lemma[6.19] there is an uncountable = € w; such that for
all £ # nin = and 7 < n,

Alge v ) € Alge) v Algy) v {A(te, 1)}

Since (;-,, X; € U(T)™, there are £ # n in = such that A(te,ty) € (-, Xi-
Because A(qg) V) A(q%) c X; by virtue of qé q; € Qx,, it follows that

<n

Algt ugh) € Algh) U Ag]) U {A(te, 1)} € X

Thus (qg V) qg, e ,qg_l v ng) is a common extension of (qg, .. .,qg_l) and
(@9,-..,qp~"). Therefore [],_, Qx, is c.c.c.. O

Proposition 6.21. Suppose that T is a coherent Souslin tree such that every
element has at least two immediate successors and F is aﬁllfer on wy containing
all cobounded sets. There is a c.c.c. poset Q which forces F < U(T).

Proof. Let A be the countable finite-support power of the poset of finite an-
tichains of T. Work in a forcing extension by A, noting that in this extension
T is special and by lemma F is a filter contained in U(T)*. Let Q be
the finite support product of the posets Q3* for X € F, where Q3 denotes
the finite-support countable power of (Jx. Since a finite-support product is
c.c.c. if and only all of its finite subproducts are c.c.c., it suffices to show that
if (X; | i < n) is a finite sequence of elements of F (possibly with repetition),
then [[,_, Qx, is c.cc.. As(),_, X; € F € U(T)*", lemma implies that
[[,-, @x, is c.c.c.. Finally, since Q3 forces that 5)/( is a union of countably
many filters, it forces that X € U(T"). Thus Q forces F < U(T). O

Proof of theorem [6.1]. By [55) 6.9], in any generic extension by Add(w, 1) there
is a coherent Souslin tree T', which we may take to have the property that every
element has at least two immediate successors. By proposition [6.21] applied to
this Souslin tree and the club filter, there is an Add(w,1)-name P for a c.c.c.
poset such that Add(w,1) * P forces that U(T) extends the club filter. Now
let Q be any Add(w,1) * P-name for a c.c.c. poset which forces MA,,. Since
any club in a c.c.c. forcing extension contains a ground model club, in the final
extension U(T') will still extend the club filter and additionally MA,,, will hold
(in particular U(T) will be an ultrafilter). O
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Corollary 6.22. It is consistent that MA,,, holds and there is a coherent A-tree
T such that U(T) extends the club filter and is wi-Tukey-top.

Proof. Start with the Abraham-Shelah model and go into the c.c.c. forcing
extension in which there is a coherent A-tree T such that U(T') extends the club
filter. The desired conclusion follows from the properties of the club filter in the
Abraham-Shelah model. O

7. Questions and Further Directions

In this section, we collect some problems and proposed directions. First,
the results of this paper emphasize the connection between the Tukey types of
ultrafilters over uncountable cardinals and the Tukey types of function spaces
of the form p*. To the best of our knowledge, the study of such Tukey types is
lacking. Particularly, we would like to know the answer to the following question
(see StackExchange discussion [29]):

Question 7.1. Is it provable in ZFC that w*? is Tukey-top?

Note that it is an old problem of Piikry whether ZFC proves cf (w1, <) = 2%,
In section [5] we showed that consistently every uniform ultrafilter over w; is
Tukey-top, and provided several models for it. There are other models of interest
where we do not know whether all uniform ultrafilters over w; are Tukey-top.
It is plausible that the rigidity of the structure of ultrafilters over w in some of
these models would enable a proof of the independence of Isbell’s question for
uncountable cardinals over ZFC, with no need for large cardinals such as our
present construction [p| of non-w;-Tukey-top ultrafilters over w; requires.

Question 7.2. Consider any of the models obtained by forcing with iterated
Sacks, side-by-side Sacks, iterated Silver, or product of Silver reals. Is every
uniform ultrafilter over wy; Tukey-top in any/all of those models?

The Silver model is particularly interesting as it is conjectured (see [I7, an-
nouncement 9 {f.]) that every ultrafilter over w is Tukey-top there. The following
question concerns other possible constructions of non-Tukey-top ultrafilters:

Question 7.3. Suppose that there is an (Ra, Ng, Rp)-saturated ideal over wy. Is
there a non-Tukey-top uniform ultrafilter over wy?

Another method for constructing weakly normal ultrafilters is due to Fore-
man, Magidor, and Shelah through layered ideals [25]

Question 7.4. Let U be the FMS weakly normal ultrafilter from [25]. Is it
non-Tukey-top?

Question 7.5. Is it consistent, relative to large cardinals, that there is a weakly
normal Tukey-top ultrafilter over w;?
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As we have seen in subsection[5.1] for £ > w; it is possible for weakly normal
ultrafilters to be Tukey-top. One approach to a positive answer is to show that
it is consistent relative to large cardinals that () holds for a weakly normal
ultrafilter U.

The constructions we used for non-Tukey-top ultrafilters over w; require
large cardinals. We do not know whether large cardinals are necessary:

Question 7.6. Does the existence of a non-Tukey-top uniform ultrafilter over
wp imply the consistency of large cardinals? What about non-w;-Tukey-top
uniform ultrafilters?

One approach to showing that it does, in alignment with our intuition and
current examples indicating that non-Tukey-top ultrafilters are special and rare,
is to connect such cardinals with non-regular ultrafilters:

Question 7.7. Is every non-Tukey-top ultrafilter uniform ultrafilter over w;
non-regular? What about non-w;-Tukey-top ultrafilters?

The best-known lower bound for the consistency strength of the existence of
non-regular ultrafilters over wy, due to Deiser and Donder [20], is a stationary
limit of measurable cardinals. The same question for k > w; is of interest, where
the best lower bound, due to Cox [19], is a measurable cardinal x with Mitchell
order at least k™.

Remark 7.8. Answering this question in the positive will in particular show that
a counterexample to Kunen’s problem requires large cardinals.

Finally, it is natural to ask what influence strong forcing axioms have on
Isbell’s problem for wy:

Question 7.9. Does PFA imply that every uniform ultrafilter over w; is Tukey-
top? What about stronger forcing axioms such as MM?
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