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Abstract

We study ultrafilters on regular uncountable cardinals, with a primary focus on
ω1, and particularly in relation to the Tukey order on directed sets. Results in-
clude the independence from ZFC of the assertion that every uniform ultrafilter
over ω1 is Tukey-equivalent to r2ℵ1săω, and for each cardinal κ of uncountable
cofinality, a new construction of a uniform ultrafilter over κ which extends the
club filter and is Tukey-equivalent to r2κsăω. We also analyze Todorcevic’s ul-
trafilter UpT q under PFA, proving that it is Tukey-equivalent to r2ℵ1săω and
that it is minimal in the Rudin-Keisler order with respect to being a uniform
ultrafilter over ω1. We prove that, unlike PFA, MAω1 is consistent with the
existence of a coherent Aronszajn tree T for which UpT q extends the club filter.
A number of other results are obtained concerning the Tukey order on uniform
ultrafilters and on uncountable directed systems.

Keywords: Ultrafilter, Tukey Order, Isbell’s problem, Tukey-top,
Rudin-Keisler Order

1. Introduction

Ultrafilters, and particularly their cofinalities and combinatorial properties,
are of special interest in several areas of mathematics such as topology, combi-
natorics, group theory; and more centrally to model theory, mathematical logic,
and set theory. In this paper we deal with several fundamental questions con-
cerning uniform ultrafilters over regular uncountable cardinals in general and
ω1 in particular. Recall that an ultrafilter over κ is uniform if all of its ele-
ments have cardinality κ—hence it is not isomorphic to a trivial extension of an
ultrafilter over a smaller cardinal.

Our results were motivated by the following longstanding open problem of
Kunen:
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Question 1.1 (Kunen). Is it consistent that there is a uniform ultrafilter over
ω1 which is generated by fewer than 2ℵ1-many sets?

It is also natural to pose this question for any uncountable cardinal κ; we will
refer to this variant as Kunen’s problem at κ.

There are several known methods to obtain ultrafilters over ω which are
generated by fewer than 2ℵ0-many elements. Perhaps the most basic of them
is Kunen’s method [43] to iterate Mathias forcing with respect to an ultrafilter.
In unpublished work, Carlson generalized Kunen’s construction to produce ul-
trafilters with small generating sets over supercompact cardinals. However, this
method cannot be straightforwardly adapted to produce such ultrafilters over
small uncountable cardinals. Recently, Raghavan and Shelah have shown that
Kunen’s problem at ℵω`1 and at 2ℵ0 have positive answers modulo a large car-
dinal hypothesis [49] (in the latter model 2ℵ0 is weakly inaccessible). Still, new
methods seem to be required to yield solutions to Kunen’s problem at successors
of regular cardinals.

Kunen’s problem can be viewed as asking whether uniform ultrafilters over
ω1 are necessarily maximally complicated, at least when measured by their
character—the number of elements which are required to generate them. There
are other natural notions of complexity on ultrafilters which are finer. The
Tukey order is defined and studied in the wider generality of directed sets,
and originated in the study of Moore-Smith convergence of nets from topology
(definitions and notation are reviewed in section 2 below). The basic theory
was set up by Tukey [58] in the 1940s, then further studied by Schmidt and
Isbell [51, 31].

Tukey showed that if κ is an infinite cardinal, the collection rκsăω of all
finite subsets of κ ordered by inclusion serves as an important benchmark in the
Tukey order: if D is any directed set of cardinality at most κ, D ďT rκs

ăω. A
directed set D of cardinality κ such that D ”T rκs

ăω, is said to be Tukey-top.
Isbell [31] and, independently, Juhász [34] constructed Tukey-top ultrafilters
over any cardinal κ using independent families. Isbell posed what came to be
known as Isbell’s problem: is every ultrafilter over ω Tukey-top?

While several constructions of Tukey-top ultrafilters are known [13, 45, 24],
the construction of non-Tukey-top ultrafilters was addressed much later by
Milovich [45], and Dobrinen and Todorcevic [23], and brought about the ac-
tive subject of the Tukey order on ultrafilters over ω. They showed that con-
sistently there are non-Tukey-top ultrafilters over ω. More precisely, Milovich
constructed one from ♢, while Dobrinen and Todorcevic showed that a p-point
over ω is non-Tukey-top. In the last decade, the subject has been studied inten-
sively by Dobrinen, Raghavan, Shelah, Todorcevic, and others [54, 23, 48, 50];
for a survey on the matter see [22]. Recently, Cancino and Zaplatal [14] an-
nounced the full resolution of Isbell’s problem by showing that it is consistent
that every nonprincipal ultrafilter over ω is Tukey-top.

As with Kunen’s problem, it is natural to generalize Isbell’s problem to other
cardinals. It is easily seen that a positive answer to Isbell’s problem at κ (in
ZFC) implies a negative answer to Kunen’s problem: if rλsăω ďT U , then U has
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character at least λ. Also, since every uniform ultrafilter on a regular cardinal
κ has character at least κ`, 2κ “ κ` implies that all uniform ultrafilters over κ
have character exactly 2κ. On the other hand, the equality 2κ “ κ` does not
trivialize Isbell’s problem at κ in the same way. For instance, while the Proper
Forcing Axiom (PFA) implies 2ℵ1 “ ℵ2, it is not known if PFA implies that
every uniform ultrafilter over ω1 is Tukey-top.

We extend this study and consider the Tukey order of ultrafilters over un-
countable cardinals. We establish a full independence result for Isbell’s question
on ω1. For the first half of this result we prove:

Theorem. It is consistent that every uniform ultrafilter over ω1 is Tukey-top.

We present several models for this:

1. The usual forcing extension adding 2ℵ1-many Cohen or random reals.

2. The Cancino-Zaplatal model where every ultrafilter over ω is Tukey-top.

3. A model due to Přikrý where GCH holds.

4. The Abraham-Shelah model [2] and its generalization for successors of
singular cardinals [10].

Note that after adding ω2-many Cohen reals (via Addpω, ω2q) to a model of
GCH, there is a non-Tukey-top ultrafilter over ω, since d “ c in that model and
Ketonen [41] proved that this is sufficient for there to be a p-point.

The other half of the independence of Isbell’s question at ω1 is obtained via
a classical construction due to Laver [44] of a uniform ultrafilter over ω1 which
is ω1-generated modulo a countably complete ideal over ω1. It is consistent
relative to large cardinals that this construction can be carried out. We will
also leverage work of Galvin to show that the constructed ultrafilter exhibits
even stronger combinatorial properties. More generally, we establish that weakly
normal ultrafilters are not Tukey-top. Several other notions and constructions
will be addressed, relevant to the extraordinary work from the 1970’s on non-
regular ultrafilters over ω1 [36, 38, 6, 52]. Recently, Usuba [59] used related
ideas to address questions about the monotonicity of the ultrafilter number. In
section 5.2 we show that this investigation is more general, and in fact yields
comparisons of the Tukey types of ultrafilters over different cardinals.

The Tukey order on uniform ultrafilters over measurable cardinals was re-
cently studied by Benhamou and Dobrinen [9]. Many results from the Tukey
order of ultrafilters over ω generalize to measurable cardinals, but also some fun-
damental differences appear. For example, over a measurable cardinal κ there
is always a non-Tukey-top ultrafilter, and in fact a κ-complete non-κ-Tukey-top
ultrafilter (see definition 2.3). This is because a measurable cardinal κ always
carries a normal ultrafilter, which is necessarily non-κ-Tukey-top. Moreover, in
contrast to Isbell’s result on ω, κ-complete κ-Tukey-top ultrafilters might not ex-
ist; for example, Benhamou and Gitik [11] noticed that in Kunen’s LrU s, where
U is a the normal measure, there is no κ-Tukey-top κ-complete ultrafilter over
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κ. This was later generalized by Benhamou [8] and Benhamou-Goldberg [12]
to other canonical inner models. In section 4.1 we provide another construc-
tion for Tukey-top ultrafilters which extend the club filter over any cardinal
κ of uncountable cofinality. For this, we introduce the notion of stationarily-
independent families and show that such families exist in ZFC for any cardinal
of uncountable cofinality. This gives an answer to [8, Q. 5.4], and improves the
construction from [9].

In the remaining part of this paper, we analyze Todorcevic’s ultrafilter UpT q
using fragments of the PFA. This ultrafilter is defined for a coherent Aronszajn
tree (A-tree) T on ω1 and in general yields a uniform filter UpT q. Moreover,
if the class of c.c.c. forcings is closed under taking products (a consequence of
MAω1), UpT q is an ultrafilter [56].

We show that PFA implies that UpT q is Tukey-top and also minimal in
the Rudin-Keisler order among uniform ultrafilters over ω1. This complements
previous work of Todorcevic [56, 57].

Theorem. Assume PFApω1q. For any coherent A-tree T , rω2s
ăω ďT UpT q. In

particular, PFA implies UpT q is Tukey-top.

Theorem. Assume PFApω1q. If T is any coherent A-tree and f : ω1 Ñ ω1,
then there is a U P UpT q such that fæU is either bounded or one-to-one.

Combining this with work of Todorcevic [57] yields the following corollary.

Corollary. Assume PFApω1q. If T is any coherent A-tree and f : ω1 Ñ ω is
any function which is not constant on a set in UpT q, then f is a finest partition
with respect to UpT q.

It is not hard to show that a uniform ultrafilter over ω1 is weakly normal if
and only if it both extends the club filter and is ďRK-minimal with respect to
being a uniform ultrafilter over ω1. While Laver has shown that MAω1 implies
there are no weakly normal ultrafilters over ω1 [44], we show that this result
does not decide whether UpT q extends the club filter.

Theorem. It is relatively consistent with MAω1
that there is a coherent A-tree

T such that UpT q extends the club filter.

This paper is organized as follows. In section 2 we provide the basics of
the relevant theory of the Tukey order and previously known results about the
Tukey types of ultrafilters over uncountable cardinals. Section 3 reviews and
establishes some basic facts about certain benchmarks in the Tukey order which
will be needed later in the paper. We establish the independence of Isbell’s
question on ω1 in section 4 and establish the consistency of every ultrafilter over
ω1 is Tukey-top, and in section 5 we settle Isbell’s problem at higher cardinals.
In section 6 we prove our results about UpT q. We close with a list of questions
and possible future directions in section 7.
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2. Preliminaries and Basic Results

We now fix some notational conventions and review some of the standard
terminology which we will use throughout the rest of the paper.

Throughout much of the paper, we assume the reader has a background in
modern set theory. The texts [32] and [43] provide a broad foundation in set
theory; [40] covers large cardinals and related concepts. Information on MAω1

can be found in [43]; information on PFA can be found in [1] and [53].
If f is a function and A is a subset of the domain of f , we will use f rAs to

denote the image of A under f . For a set A, and a cardinal λ, rAsλ denotes
the collection of subsets of A of cardinality λ. Similarly, rAsăλ is the collection
of subsets of A of cardinality ă λ. The set Aλ denotes the set of all functions
f : λ Ñ A and Aăλ denotes the set of functions of the form f : α Ñ A for
some α ă λ. For f, g P λκ, any binary relation R on λ, and any ideal I over
κ we write g RI f if and only if tα ă κ | gpαq ­R fpαqu P I. In particular,
we write f ď g when for every α, fpαq ď gpαq and f ď˚ g if g ďJκ

bd
f ,

where Jκ
bd “ tX Ď κ | suppXq ă κu is the bounded ideal over κ. These

relations are typically not antisymmetric but induce antisymmetric relations on
the associated equivalence classes. We will often abuse notation by working
with representatives rather than equivalences classes even though we will treat
these as partial orders. We denote by Addpµ, λq the Cohen forcing consisting of
partial functions f : µˆ λÑ 2 such that |f | ă µ.

2.1. The Tukey order

Recall that a poset is a set P equipped with a transitive, reflexive, antisym-
metric relation ď. A poset is (upward) directed if for any p, q P P there is r P P
with r ě p, q. A directed set is a poset which is directed. For A,B Ď P , we write
A ď B when for every a P A and b P B, a ď b. If an element of P appears in a
relation with a set, the meaning is to replace it with its singleton (e.g. p ď A
means tpu ď A).

For µ a cardinal, a poset pP,ďq is called µ-directed when for any A Ď P with
|A| ă µ there is p P P with p ě A. Note that directed is the same as ω-directed.

A subset A of a poset pP,ďq is:

1. bounded if there is p P P such that A ď p,

2. cofinal if for every p P P there is a P A such that p ď a.

The cofinality of a poset P , denoted cf P , is the minimum cardinality of a cofinal
subset.
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Definition 2.1. Let pP,ďP q,pQ,ďQq be posets. A function f : P Ñ Q is

1. monotone if whenever p, q P P and p ďP q, fppq ďQ fpqq,

2. Tukey if for every bounded B Ď Q, f´1pBq is bounded in P .

3. cofinal if for every cofinal A Ď P , f rAs is cofinal in Q.

The poset P is Tukey-reducible to Q, written P ďT Q, if there is a Tukey map
f : P Ñ Q, or equivalently if there is a cofinal map g : QÑ P .

It is immediate from the definitions that if pP,ďP q ďT pQ,ďQq, then cfpP,ďP

q ď cfpQ,ďQq.
The equivalence classes of the Tukey reducibility order are called Tukey types.
For any infinite cardinal, Tukey proved that there is a ďT -maximum directed

set of cardinality κ.

Proposition 2.2 ([58, Thm. 5.1]). For any directed set pP,ďP q such that
|P | ď κ, there is a Tukey reduction pP,ďP q ďT prκs

ăω,Ďq.

Definition 2.3. A directed set P is pµ, λq-Tukey-top if there exists a collection
A P rP sλ such that every B P rAsµ is unbounded in P . In the context of
ultrafilters over a cardinal κ, by µ-Tukey-top we mean pµ, 2κq-Tukey-top. Tukey-
top means ω-Tukey-top, as clarified in the following theorem.

Theorem 2.4 (Tukey [58]). Let λ and µ be regular cardinals, and suppose that
cfprλsăµ,Ďq “ λ. The following are equivalent for any poset P :

1. P is pµ, λq-Tukey-top.

2. rλsăµ ďT P .

Theorem 2.5 (Schmidt [51, Thm. 14]). If a µ-directed poset P has cofinality
λ then P ďT rλs

ăµ.

Fact 2.6 (Folklore). If P ďT Q and Q is µ-directed then P is µ-directed.

Proof. Suppose for contradiction that A P rP sλ has no upper bound, where λ ă
µ. Let κ “ |P |. Since P ďT rκs

ăµ, there is an unbounded map f : P Ñ rκsăµ,
which can easily be made injective (say by reserving κ elements of κ to serve as
labels). Hence f rAs is also unbounded. This is a contradiction, since rκsăµ is
µ-directed.

2.2. Ultrafilters

Recall that F is a filter over a set X if F Ď PpXq is nonempty, upwards
closed, downwards directed, and does not contain H. A filter U is an ultrafilter
if it is maximal under inclusion with respect to being a filter or, equivalently,
for every Y Ď X either Y or XzY is in U . An ultrafilter is nonprincipal if it
does not contain any singletons. It is uniform if all sets in the ultrafilter have
the same cardinality.

In this paper we shall primarily be concerned with Tukey types of uniform
ultrafilters, considered as directed posets under reverse inclusion. The next
lemma is useful when comparing ultrafilters using the Tukey order.
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Lemma 2.7 ([23, Fact 6]). If U , V are uniform ultrafilters over an infinite
cardinal κ and U ďT V, then there is a monotone cofinal map f :V Ñ U .

Thus Tukey reductions between uniform ultrafilters over the same set are always
witnessed by monotone cofinal maps.

While it will be more tangential to our discussion, the most important order
on ultrafilters is a further refinement of the Tukey order known as the Rudin-
Keisler order.

Definition 2.8. Let U be an ultrafilter over a set X, and let f : X Ñ Y be a
function. The projection f˚U of U to Y along f is the ultrafilter

tB Ď Y | f´1pBq P Uu.

For V an ultrafilter over Y , we say that V is Rudin-Keisler reducible to U and
write V ďRK U when there is f : X Ñ Y such that V “ f˚U .

It is a straightforward consequence of the definitions that for ultrafilters U
and V, if U ďRK V then U ďT V. Ultrafilters U and V are said to be isomorphic
when there is a bijection f between their underlying sets such that V “ f˚U ,
and it is known that if U ďRK V and V ďRK U then U and V are in fact
isomorphic.

We will pause here to remark that ultrafilters appear in many different con-
texts in the literature and tend to be denoted in many different ways: by p and
q in the study of the Čech-Stone compactification of ω to emphasize their role
as points; by U and V for ultrafilters over ω or other small cardinals when one
wishes to emphasize that they are collections of sets; by U and V in the context
of large cardinals. As different parts of this paper are closest to the contexts
of these different notational traditions, our conventions will shift. This should
cause no confusion; nonetheless, we alert the reader to promote clarity.

We are interested in Tukey types of uniform ultrafilters over regular uncount-
able cardinals, with ω1 as the most salient cardinal and the central questions
being whether all ultrafilters over a given cardinal are pµ, λq-Tukey-top for fixed
regular cardinals µ ď λ. The study of such ultrafilters traces back to Keisler [15],
who introduced the following notion motivated from a model-theoretic point of
view:

Definition 2.9. Let λ ď µ be cardinals. An ultrafilter U is pλ, µq-regular if
there is a set A Ď U such that |A| “ µ and for every B Ď A with |B| “ λ,
Ş

B “ H. If U is a uniform ultrafilter over κ we say that U is regular if it is
pω, κq-regular.

Regularity-like properties were later studied in the 1970s in a series of influ-
ential papers by Ketonen-Benda [6], Kanamori [37, 39, 35, 38], Kunen [42] and
Taylor [52]. The following definition is highly connected to regularity:

Definition 2.10. A uniform ultrafilter U over κ is called weakly normal if
for any regressive function f : κ Ñ κ, there is θ ă κ such that f´1rθs P U .
Equivalently, ridsU “ supθăκrcθsU .
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It is well-known that weakly normal ultrafilters extend the club filter. The
next theorem establishes the equivalence of the existence of non-regular ultra-
filters with the existence of weakly normal ones:

Theorem 2.11 (Kanamori [37], Ketonen-Benda [6]). Let U be a uniform ultra-
filter over κ`, then:

1. If U is weakly normal then U is non-regular.

2. If U is non-regular, then U is above a weakly normal ultrafilter in the
Rudin-Keisler order.

Theorem 2.12 (Laver [44]). MAω1
implies that every uniform ultrafilter over

ω1 is regular. In particular, MAω1 implies there are no weakly normal ultrafilters
over ω1.

Kanamori [38] studied pµ, λq-Tukey-top ultrafilters, though under a different
name, as a weakening of regular ultrafilters, proving that any uniform ultrafilter
over an uncountable cardinal is p2κ, 2κq-Tukey-top. Shortly after, Taylor and
Galvin proved the following results which constitute a starting point for the
investigation of this paper:

Theorem 2.13 (Taylor [52, Thm 2.4(2)]). If U is a uniform ultrafilter over a
successor cardinal κ`, then U is pκ, κ`q-Tukey-top.

Theorem 2.14 (Galvin; appears as [4, Thm. 3.3]). Let µ be a cardinal such
that µăµ “ µ. Then for any normal filter F over µ, F is not pµ, µ`q-Tukey-top.

Although we will mostly be interested in small uncountable cardinals, let
us mention that recently the topic of (non)-pµ, λq-Tukey-top ultrafilters gained
renewed interest in the case of measurable cardinals under yet another name—
the Galvin property—due to several new applications (e.g. [9, 10, 11, 12]).

3. Distinguished Tukey-types Related to Ultrafilters over Uncount-
able Cardinals

In this section, we study some Tukey types which relate to ultrafilters over a
regular uncountable cardinal κ, namely cofinal types of cardinality at most 2κ.

3.1. The Abraham-Shelah model and the Tukey-type of the club filter

Let us denote the club filter by Cubκ; this is the filter generated by clubs1

in κ. First observe that the Tukey type of the club filter is the following:

Lemma 3.1 (Folklore). For κ regular, pCubκ,Ěq ”T pκ
κ,ďq

1i.e. set which are closed in the order topology of κ and unbounded.
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Proof. Cubκ ďT κκ is witnessed by the unbounded function X ÞÑ fX , where fX
is the increasing enumeration of the club X. The other direction is witnessed by
the cofinal function f : Cubκ Ñ κκ defined by fpXqpαq “ fXpα` 1q. Certainly
both of these functions are monotone, and one checks that they are unbounded
and cofinal, respectively, by examining clubs of closure points of elements of
κκ.

It follows that the generalized dominating number dκ “ cfpκκ,ď˚q “ cfpκκ,ď
q is just χpCubκq; as usual, d denotes cfpωω,ďq. The fact that the club filter
is σ-complete automatically rules out the possibility of it being Tukey-top, but
can it be ω1-Tukey-top? As stated in the previous section (see theorem 2.14),
Galvin showed that under κăκ “ κ, every normal filter over κ is not Tukey-above
rκ`săκ. Abraham-Shelah proved the following theorem [2]:

Theorem (Abraham-Shelah Model). Assume GCH holds. Suppose κ, λ are
infinite cardinals such that cfpκq “ κ ă κ` ă cfpλq ď λ. Then, in a forcing
extension there is a family C of λ-many clubs in κ`, such that:

For every subfamily D Ď C with |D| “ κ`, |
Ş

D| ă κ.

Moreover, 2κ “ 2κ
`

“ λ holds in this model provided cfpλq ą κ`.

In particular, in the Abraham-Shelah model, the club filter Cubκ` is κ`-
Tukey-top. At the successor of a singular cardinal, this was established in [10],
and for a (weakly) inaccessible cardinal κ, it is still open whether the club filter
can be κ-Tukey-top [10, Q. 5.7]. Applying this theorem to ω1, we can find a
model with 2ℵ1-many clubs such that the intersection of any ℵ1-many of these
clubs is finite. It follows that any extension of the club filter is not Tukey-top.
More generally, the club filter enjoys the property of being deterministic, as
introduced in [7]. A filter F is deterministic if it is generated by a set B such
that for any A Ď B, if

Ş

A R F then
Ş

A P F˚. Deterministic filters have the
property that if F Ď F 1 then F ďT F 1.

Proposition 3.2. Cubκ is a deterministic filter. Hence, any uniform extension
of the club filter is Tukey-above it.

So in the Abraham-Shelah model, in fact any extension of Cubω1
is ω1-

Tukey-top. In the next section, we will moreover see that in this model every
uniform ultrafilter over ω1 is Tukey-top.

3.2. On the cofinal type of κpκ`
q

The directed set pωω1 ,ďq will play an important role later in the paper.
Much of the basic analysis we will need readily generalizes to higher cardinals.

Lemma 3.3. Suppose that I is a κ`-complete ideal over κ`. Then

pκpκ`
q,ďIq ”T pκ

pκ`
q,ďq.
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Proof. Clearly, the identity map is a Tukey reduction witnessing that

pκpκ`
q,ďIq ďT pκ

pκ`
q,ďq.

For the other direction, the assumption that I is κ`-complete ensures the ex-
istence of a partition κ` “

Ţ

iăκ` Ai where each Ai P I` (see [40, 16.3]).
Consider the map f ÞÑ F pfq, where F pfqpαq :“ fpiq for the unique i ă κ` such

that α P Ai. To see that F is a Tukey reduction, let A Ď κpκ`
q be unbounded

in ď, meaning there is i˚ ă κ` such that tfpi˚q | f P Au is unbounded in κ.
Suppose for contradiction that g is a ďI -bound for F rAs. Consider gæAi˚ , and
note that since I is κ`-complete, there must be a positive A1 Ď Ai˚ such that
gæA1 is constantly α˚ for some α˚ ă κ. This is impossible since for every f P A,
F pfq ďI g, so there is αf P A1 such that α˚ “ gpαf q ě F pfqpαf q “ fpi˚q, in
which case α˚ bounds tfpi˚q | f P Au within κ.

The following lemma provides a significant lower bound for the Tukey type
of κpκ`

q.

Lemma 3.4. Suppose that there is a family F Ď rκ`sκ
`

which is almost disjoint

modulo bounded. Then rλsăκ ďT κpκ`
q, where λ “ |F|.

Proof. Fix injections eβ : β Ñ κ for each β ă κ`, and for X P F define
fX : rκ`s2 Ñ κ by

fXpα, βq :“

#

eβpminpX X rα, βqq if X X rα, βq ‰ H

0 otherwise

Since κrκ`
s
2

”T κκ`

, it suffices to show that X ÞÑ fX has the property that
whenever F0 Ď F has cardinality κ, tfX | X P F0u is unbounded. Let F0 Ď F
be a set of cardinality κ. Let α ă κ` be sufficiently large that tXzα | X P F0u

is pairwise disjoint and let β ą α be such that minpXzαq ă β for all X P F0.
Then X ÞÑ fXpα, βq is one-to-one and hence tfX | X P F0u is unbounded in

κrκ`
s
2

.

Remark 3.5. Any family F Ď κpκ`
q of functions different modulo bounded2

induces a family of subsets of κ` almost disjoint modulo bounded of the same
cardinality. This is proven by transferring the graphs of the functions through
a bijection of κ` ˆ κ` with κ`. The other direction is also clear: any family
of functions different modulo bounded sets induces a family of almost disjoint
functions modulo bounded of the same cardinality.

Recall that the generalized bounding number, denoted by bµ, is the minimal
size of an unbounded family in pµµ,ď˚q. It is well known that µ` ď bµ ď 2µ.

Corollary 3.6.

2i.e. for any distinct f, g P F , tα | fpαq “ gpαqu is bounded in κ.
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1. rbκ`săω ďT κpκ`
q.

2. 2κ “ κ` implies that κpκ`
q is Tukey-top.

Proof. Both items use the previous remark. For (1), it is possible to recursively
define a strictly increasing chain of length bκ` of functions increasing modulo
bounded. For (2), if 2κ “ κ`, then for every α ă κ`, let πα : Ppαq Ñ κ`

be an injection. For every X Ď κ` set fXpαq “ παpX X αq. Now if X ‰ Y
then there is α ă κ` such that for every β ě α, X X β ‰ Y X β and therefore
fXpβq ‰ fY pβq.

Remark 3.7. It is impossible to prove in ZFC the existence of 2κ
`

-many almost
disjoint subsets of κ`. Indeed, Baumgartner [3] proved that consistently there
is no such family. In that paper Baumgartner also gives more assumptions
under which there are 2κ

`

-many almost disjoint subsets of κ`, and therefore
additional assumptions guaranteeing κpκ`

q is Tukey-top.

Corollary 3.8.

1. pκ`qκ
`

ăT κpκ`
q.

2. κpκ`
q ”T pκ

κqκ
`

.

Proof. For (1), we have that κpκ`
q ěT rbκ`săκ and therefore κpκ`

q ěT κ. It

follows that κpκ`
q ”T pκ

pκ`
qqκ

`

ěT pκ
`qκ

`

. The strict inequality follows from

the fact that κpκ`
q is not κ`-directed and fact 2.6. (2) is straightforward.

Hence for example, since b, d ďT pωω,ďq, then ωω1 ěT bω1 , dω1 . We do
not know whether ωω1 (for example) is provably Tukey-top in ZFC (see ques-
tion 7.1).

We now turn our attention to the relation between ultrafilters over ω1 and
the cofinal type of ωω1 . The following notation will be used throughout the
remainder of the paper. Fix a sequence e⃗ “ xeβ | β ă ω1y such that each
eβ : β Ñ ω is one-to-one. Define

U e⃗
α,n “ tβ P ω1 | β ď α or n ď eβpαqu

and for a partial function f : ω1 Ñ ω, set

U e⃗
f “

č

αPdompfq

Uα,fpαq.

In what follows, there will be no risk of ambiguity and we will suppress the
superscript e⃗.

Lemma 3.9. If U is a uniform ultrafilter over ω1, then there is an α0 such that
for all α ě α0 and all n P ω, Uα,n P U .
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Proof. Let X be the set of all α ă ω1 such that for some n, Uα,n R U . Define
g : X Ñ ω by gpαq “ n if for U-many β’s, eβpαq “ n. This is always defined
since, given α P X and n with Uα,n R U ,

ω1zUα,n “
ď

kďn

tβ ą α | eβpαq “ ku

and hence one of these sets is in U . One can also easily check that g : X Ñ ω
is one-to-one, and hence X is countable.

Let I be an ideal over ω1 and U an ultrafilter over ω1. Consider the state-
ment:

@f : ω1 Ñ ω DX P I˚ UfæX P U (p:qI,U )

This principle gives a sufficient condition for U to be above ωω1 and will be used
in later parts of the paper.

Proposition 3.10. Let I be σ-complete. Then p:qI,U implies pωω1 ,ďq ďT U .

Proof. Arguing as in lemma 3.3, we fix g : ω1 Ñ ω1 such that g´1rtius P I`

for every i ă ω1. Let us describe an unbounded map from ωω1 to U . For each
f : ω1 Ñ ω, let Xf P I

˚ be a set such that Upf˝gqæXf
P U , which exists by p:qI,U .

Define Uf :“ Upf˝gqæXf
. Let F Ď ωω1 be ď-unbounded. Again, by replacing

F with a countable subset if necessary, we may assume F is countable. Let
δ ă ω1 be such that tfpδq | f P Fu is unbounded, and consider g´1rtδus P I`.
Set X :“

Ş

tXf | f P Fu. Since I is σ-complete, there is δ˚ P X X g´1rtδus,
hence tfpgpδ˚qq | f P Fu is unbounded. Suppose towards a contradiction that
Ş

tUf | f P Fu P U , then by uniformity of U , it would contain some β ą δ˚.
But then eβpδ

˚q ą pf ˝ gqpδ˚q for all f P F , contrary to our choice of δ˚. Thus
Ş

tUf | f P Fu P U .

Using corollary 3.6, we immediately conclude:

Corollary 3.11. Assume 2ℵ1 “ ℵ2, and let I be a σ-complete ideal. Any
uniform ultrafilter V satisfying p:qI,V is Tukey-top.

4. Isbell’s Question for Uncountable Cardinals

In this section, we consider the analogue of Isbell’s problem which was dis-
cussed in the introduction, concerning ultrafilters over uncountable cardinals.
Perhaps surprisingly, we will show that a positive answer to Isbell’s problem on
uncountable cardinals is witnessed by a fairly simple model, and the challenge
seems to be concentrated on constructing models with non-Tukey-top ultrafil-
ters.

12



4.1. ZFC constructions

Isbell [31] in fact proved that there is a Tukey-top ultrafilter over every
infinite cardinal.

Proposition 4.1 (Isbell). For any infinite cardinal κ, there is a uniform ultra-
filter U over κ which is Tukey equivalent to r2κsăω.

More precisely, Isbell constructed a maximal number of such ultrafilters using
independent families. In [9, Prop. 3.21-3.22], normal κ-independent families
(due to Hayut [27]) were used to run a construction similar to Isbell’s, resulting
in Tukey-top ultrafilters which extend the club filter (see theorem 4.2 below).
Recall that xAi | i ă λy is called a normal κ-independent family, if it is κ-
independent and for any two disjoint subfamilies xAαi

| i ă κy, xAβi
| i ă κy Ď

xAi | i ă λy, the diagonal intersection ∆iăκpAαi
zAβi

q is a stationary subset of
κ.

In contrast to standard κ-independent families, the existence of a normal κ-
independent family is not guaranteed by ZFC alone. For example [8, Proposition
4.2] , if ♢pκq holds, then there is a normal κ-independent family of length 2κ.

Theorem 4.2 (Benhamou-Dobrinen). Suppose that there is a normal κ-independent
family of length 2κ, and let µ ă κ be a cardinal. Then there is a µ-complete filter
F 1
µ,top extending the club filter such that any extension of F 1

µ,top to an ultrafilter
is µ-Tukey-top.

Hence, if ♢pκq holds, then there is a Tukey-top ultrafilter U over κ which
extends the club filter. In particular, if V “ L then for every regular cardinal
κ there is an ultrafilter over κ which is Tukey-top and extends the club filter.
Also if κ is a strongly compact cardinal, then there is a κ-complete κ-Tukey-top
ultrafilter extending the club filter.

Note that if κăκ “ κ, then by Galvin’s theorem 2.14 the filter F 1
top cannot be

normal. Galvin’s theorem emphasizes that the construction of F 1
top uses heav-

ier machinery than is needed, since normal independent families are primarily
designed to give rise to normal filters. Let us provide another construction that
removes the dependence on ♢pκq. For this we introduce the following notions.

Given a sequence X⃗ “ xXα | α ă λy of subsets of a cardinal κ, a flip of X⃗ is

a sequence of the form X⃗σ :“ xX
σpiq
i | i P dompσqy, where σ is a (non-empty)

partial function from λ to 2, and for every i,

Xϵ
i “

#

Xi ϵ “ 0

κzXi ϵ “ 1
.

If σ : λ Ñ 2 is a total function, we say that X⃗σ is a full flip. In this context,
it will be convenient to identify a sequence of sets with its range. Thus for

example we write
Ş

X⃗σ for
Ş

tX
σpiq
i | i P dompσqu.

Definition 4.3. A family of sets xXi | i ă λy Ď Ppκq is called a µ-stationary
independent family if any finite Boolean combination of length ă µ of the family
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is stationary. That is, if for every partial σ : λ Ñ 2 with |σ| ă µ,
Ş

X⃗σ is
stationary in κ.

A normal κ-independent family is a κ-stationary independent family [8].
Also note that any flip of a µ-stationary independent family is µ-stationary
independent.

Proposition 4.4. Let µ ď κ and λ ď 2κ be cardinals and suppose that there
is a µ-stationary independent family of subsets of κ of size λ. Then there is a
µ-complete filter F extending the club filter such that any extension of F to an
ultrafilter is pµ, λq-Tukey-top.

Proof. Let tXi | i ă λu be a µ-stationary independent family of subsets of κ. Let
F be the µ-complete filter generated by CubκYtXi | i ă λuYtκzp

Ş

iPI Xiq | I P
rλsµu. If we can show that F is proper, then it clearly has the properties sought
for. It remains to see that the generating set above has the finite intersection
property. Let I P rλsăµ and tIα | α ă θu Ď rλsµ where θ ă µ. It suffices to
show that

č

iPI

Xi X p
č

αăθ

pκz
č

jPIα

Xjqq

is stationary. Since all the Iα’s have size µ, we can find jα P IαzI and simply
note that the set

Ş

iPI Xi X
Ş

αăθ κzXjα is a stationary subset of the above
set.

Finally, let us construct a µ-stationary independent family of maximal size:

Proposition 4.5. Let κ be a regular uncountable cardinal such that κăµ “ κ.
Then there is µ-stationary independent family of 2κ-many sets.

Proof. let xUξ | ξ ă κy be an enumeration of the clopen subsets of 2κ in its
ă µ-topology3, where each element is repeated stationarily often. Note that
this enumeration is possible since κăµ “ κ. For any x P 2κ, define Ix “ tξ P κ |
x P Uξu. We now argue that tIx | x P 2

κu is µ-stationary independent. Consider
any I, J P r2κsăµ such that I X J “ H. Let I Y J “ txα | α ă θu. Since there
are less than µ-many xα, there is a set s P rκsµ such that s X xi ‰ s X xj for
all i ‰ j ă θ. Define Y “

Ť

xPI Bx,s, where Bc,s is the basic clopen set of all
x such that x X s “ c. By the choice of s, x P Y iff x P I. Since Y is indexed
stationarily many times, for any ξ such that Uξ “ Y , ξ P Ix iff x P I, and hence
ξ P p

Ş

xPI Ixq X p
Ş

yPJ Icyq, as desired.

Corollary 4.6. Let κ be a regular uncountable cardinal and µ be any cardinal
such that κăµ “ κ. Then there are 22

κ

-many µ-Tukey-top ultrafilters over κ.

Since any regular cardinal satisfies κăω “ κ, applying the above corollary
to µ “ ω gives an answer to [8, Q. 5.4]. Also, note that κăµ “ κ is in fact
equivalent to the existence of a µ-independent family of length κ.

3Here we mean the usual product topology generated by the ă µ-supported product of the
discrete topology on 2.

14



4.2. Consistency results

Let us start by settling the consistency of an affirmative answer to Isbell’s
question of whether all uniform ultrafilters are Tukey-top in the case of cardinals
κ ą ω. We say that the sequence X⃗ of subsets of κ has the flipping µ-bounded
intersection property, if for any flip X⃗σ where |σ| “ µ, |

Ş

X⃗σ| ă κ.

Proposition 4.7. Suppose that there is a sequence of subsets of κ of length λ
with the flipping µ-bounded intersection property. Then every uniform ultrafilter
U over κ is pµ, λq-Tukey-top.

Proof. Given any ultrafilter U , there is a full flip X⃗σ such that X⃗σ Ď U . The
rest follows from uniformity.

Theorem 4.8. Let ω ď µ “ µăµ ă κ ă λ be cardinals, P “ Addpµ, λq, and
G Ď P be any V -generic filter. Then in V rGs there is a sequence xXα | α ă λy Ď

Ppκq such that for every flip X⃗σ with |σ| “ µ, |
Ş

iPI X
σ
i | ď µ. In particular, if

cfpκq ą µ, then X⃗ has the flipping µ`-bounded intersection property.

Proof. Observe that Addpµ, λq is forcing equivalent to the poset of all partial
functions p : κ ˆ λ Ñ 2 such that |domppq| ă µ. If G is generic for this poset
and i P λ, define

Xi “ tα P ω1 | Dp P G pppi, αq “ 1qu.

Let us prove that xXi | i ă λy has the flipping µ-bounded intersection property.
Suppose towards a contradiction that σ : λ Ñ 2 is a partial function, |σ| “ µ

and |
Ş

X⃗σ| ě µ`. Back in V , let 9σ be a name for σ and use the µ`-chain
condition, to find I P V , |I| “ µ such that dompσq Ď I. Let p P G be a

condition forcing that domp 9σq Ď I and that |
Ş 9⃗

X 9σ| ě µ̌`. Let θ be sufficiently
large and M ă Hθ be a model of size µ, closed under ă µ-sequences, and such
that p, 9σ,P, X⃗, I, µ P M , noting that µ ` 1 Ď M . It is easy to check that
PXM “ Addpµ, λXMq. Next, find α P κzM and p1 ď p a condition such that

p1 , α̌ P
č 9⃗

X 9σ.

Let D Ď Addpµ, λq be the set of all q such that for some i P IzSupppp1q, and
ϵ “ 0, 1, q , ǐ P domp 9σq ^ 9σpiq “ ϵ. Then D is dense below p as Supppp1q has
size ă µ while p forces | 9σ| “ µ̌. Note that D is definable in M as IzSupppp1q “

IzpI X Supppp1qq and I X Supppp1q P M as M is closed under ăµ-sequences.
Fix a maximal antichain A Ď D, such that A P M . By the chain condition,
A ĎM and there is p2 ď p, p2 P A such that p1 and p2 are compatible. Fix i, ϵ
witnessing that p2 P D. Since i R Supppp1q and α R M , xi, αy R dompp1 Y p2q.
Define q “ p1 Y p2 Y txxi, αy, 1 ´ ϵyu. Then q ď p1 but also q , α R 9X 9σ

i and
i P dom 9σ, contradiction.

The case µ “ ω, κ “ ω1 and λ “ 2ℵ1 is the one of primary interest—this is
the poset to add 2ℵ1 Cohen reals (as a finite support product). The proof can
be summarized as follows, making clear that the conclusion carries over to the
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standard poset to add 2ℵ1 random reals. Let tXi | i P λu be the generic subsets
of ω1. First, if I Ď λ is countably infinite and in the ground model, then both
Ş

iPI Xi and
Ş

iPI ω1zXi are empty by genericity. Second, if I is a countably
infinite set in the generic extension, then there is an α ă ω1 such that I is in
the intermediate generic extension by tXi X α | i P λu. Since tXizα | i P λu
is generic over this intermediate extension, by the previous observation

Ş

iPI Xi

and
Ş

iPI ω1zXi are contained in α. Since any flip will be constant on a countably
infinite set, the desired conclusion follows.

Corollary 4.9. In any generic extension by Addpω, 2ω1q or by the homogeneous
measure algebra of character 2ℵ1 , every uniform ultrafilter over ω1 is Tukey-top.

Remark 4.10. This result was obtained independently by Jorge Chapital [16].

The results of [2] also yield the following

Corollary 4.11. In the Abraham-Shelah model from [2], the club filter over ω1

is ω1-Tukey-top, and moreover, every ultrafilter over ω1 is Tukey-top.

Proof. Assume GCH and let S denote the Abraham-Shelah poset. Abraham
and Shelah in [2] prove that Addpω, ω2q is a regular suborder of S and that the
quotient is σ-distributive, which is to say that the any ω-sequence of ordinals in
V S belongs already to V Addpω,ω2q. Hence the mutually-generic sequence of Co-
hen reals from the previous proof persists as a witness for any uniform ultrafilter
over ω1 being Tukey-top.

Recall that in the Cancino and Zapletal model [14] where every ultrafilter
over ω is Tukey-top, 2ℵ0 “ 2ℵ1 “ ℵ2.

Theorem 4.12. Suppose that every ultrafilter over ω is Tukey-top and that
2ℵ0 “ 2ℵ1 . Then every uniform ultrafilter over ω1 is Tukey-top.

Proof. Let U be any uniform ultrafilter over ω1. It is well known that every
uniform ultrafilter is ω-decomposable, namely, there is a function f : ω1 Ñ ω
such that W “ f˚pUq is a uniform ultrafilter over ω. Since W ďRK U , we also
have W ďT U , and since every ultrafilter over ω is Tukey-top we have:

r2ℵ1săω “ r2ℵ0săω ďT W ďT U .

Hence U is Tukey-top.

Remark 4.13. It was proposed (see for example [28]) that a possible solution
to the Katowice problem [46] (whether it is consistent that Ppω1q{fin and
Ppωq{fin can consistently be isomorphic) is to prove in ZFC that there is an
ultrafilter over ω that is not Tukey-equivalent to any uniform ultrafilter over
ω1. This would give a negative answer to the problem. In the above model, this
strategy cannot succeed. Still, Ppωq{fin –Ppω1q{fin has a number of nontrivial
consequences and it is still conceivable that a combination of these consequences
implies that there is an ultrafilter over ω which is not Tukey-equivalent to any
uniform ultrafilter over ω1.
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Next, we consider whether CH implies the existence of a non-Tukey-top
ultrafilter over ω1. First we observe that something slightly weaker than a
flipping family with the bounded intersection property is needed:

Proposition 4.14. Suppose that there is a family xAα | α ă λy Ď κ such that
whenever I P rλsµ, both

Ş

αPI Aα and
Ş

αPI ω1zAα are bounded in κ. Then every
uniform ultrafilter over κ is pµ, λq-Tukey-top.

Proof. Given any uniform ultrafilter U over a cardinal κ, for each α ă λ, either
Aα P U or κzAα P U . There is J P rλsλ such that either tAα | α P Ju Ď U
or tκzAα | α P Ju Ď U . In either case, the assumption implies that U is
pµ, λq-Tukey-top.

Remark 4.15. The existence of xAα | α ă λy Ď κ such that whenever I P rλsµ

both
Ş

αPI Aα and
Ş

αPI κzAα are bounded in κ, is equivalent to the negative

partition relation
`

λ
κ

˘

­Ñ
`

µ
κ

˘1,1

2
; there exists c : λˆ κÑ 2 such that there is no

homogeneous rectangle (i.e. a set of the form Aˆ B on which c takes just one
value), where A P rλsµ and B P rκsκ.

Přikrý [47] showed the consistency of GCH with
`

ω2

ω1

˘

­Ñ
`

ω
ω1

˘1,1

2
. Hence, we

establish the following:

Corollary 4.16. It is consistent that GCH holds and that every uniform ultra-
filter over ω1 is Tukey-top.

Corollary 4.17. If
`

ω2

ω1

˘

­Ñ
`

ω
ω1

˘1,1

2
holds, then any cardinal-preserving σ-closed

forcing will preserve this.

Proof. Suppose P is σ-closed and c P V witnesses the negative partition relation.
Suppose that A P V rGs is any countably infinite subset of ω2. Then A P V . If
B P V rGs is any subset of ω1 such that crA ˆ Bs “ tiu, then B Ď C :“ tα ă
ω1 | @a P A, cpa, αq “ iu. Clearly, C P V , and since crA ˆ Cs “ tiu, C must
also be countable. Hence, B is countable.

5. Large Cardinal Ideals and Non-Tukey-Top Ultrafilters

If κ carries a uniform σ-complete ultrafilter (e.g. if κ is measurable) then
clearly this ultrafilter is non-Tukey-top. Moreover, any p-point ultrafilter (in
which case either κ “ ω or else κ has to be measurable) will be a non-κ-
Tukey-top ultrafilter. Since, for example, there are no p-points nor σ-complete
ultrafilters over ω1, it is unclear whether there can be a non-ω1-Tukey-top, or
even a non Tukey-top, ultrafilter over ω1. In this subsection, we prove that such
ultrafilters consistently exist over ω1.

Proposition 5.1. Suppose that I is a σ-complete pκ`, µq-saturated ideal over
κ. Then the forcing Ppκq{I adds a V -ultrafilter which is not pµ, κ`q-Tukey-top.
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Proof. Let G be the generic ultrafilter. Suppose toward a contradiction that
G is µ-Tukey-top. Let xXi | i ă κ`y witness that G is µ-Tukey-top. Let
p 9Xi | i ă κ`q be names and let Y P Ppκq{I be a condition such that Y ,

x 9Xi | i ă κ`y is a witness. For each i ă κ` let Yi ď Y be such that for
some Yi Ď Zi, Yi , 9Xi “ Ži. Consider in V the sequence xYi | i ă κ`y; by
the saturation assumption there is a Ξ P rκ`sµ such that xYi | i P Ξy has a
lower bound in Ppκq{I. By the σ-completeness of I, Y ˚ “

Ş

iPΞ Yi P Ppκq{I.

However, Y ˚ forces that x 9Xi | i ă κ`y does not witness that G is Tukey-top,
contradiction.

Of course, the ultrafilter from the previous proposition is not going to be an
ultrafilter in the generic extension. It is therefore natural to ask whether it is
possible to construct a non-Tukey-top ultrafilter from an pω2, ω2, ωq-saturated
ideal over ω1 or from other saturation assumptions.

Corollary 5.2. It is consistent that there is an ω2-saturated ideal and every
uniform ultrafilter over ω1 is Tukey-top.

Proof. Laver [44] showed that starting with a model where there is such an ideal
I and CH holds, upon adding ω2-many Cohen reals, the filter generated by I
has the same saturation property. As we have seen in 4.9, in this model every
uniform ultrafilter over ω1 is Tukey-top.

Let p˚q denote the assumption:

♢` D a normal ideal over ω1 which is ω1-dense

Woodin proved that p˚q is consistent relative to determinacy assumptions [60].

Theorem 5.3. Under p˚q there is a weakly normal non-ω1-Tukey-top uniform
ultrafilter over ω1.

Proof. By Laver [44] there is an ultrafilter U which is generated by I Y tAα |

α ă ω1u, where I is a normal filter and each Aα Ď ω1. That is, for any X P U ,
there is α ă ω1 such that AαzX P I. We claim that U is not ω1-Tukey-top (and
therefore also not Tukey-top). Let xXα | α ă ω2y Ď U . Then for every α ă ω2

there is β ă ω1 such that AβzXα P I. Fix β˚ and J P rω2s
ω2 such that for

every α P J , Bα :“ Aβ˚zXα P I. The sequence xBα | α P Jy is a sequence of
ω2-many sets in the normal ideal I. Note that by ♢, CH holds and therefore we
can apply Galvin’s theorem 2.14 and obtain ω1-many of the Bα’s for which the
union is in I. Choose J0 P rJs

ω1 such that Aβ˚zp
Ş

αPJ0
Xαq “

Ť

αPJ0
Bα P I.

Since Aβ˚ P U ,
Ş

αPJ0
Xα P U as desired.

Huberich [30] removed the diamond assumption and constructed a similar
weakly normal ultrafilter from CH and an ω1-dense ideal over ω1. More precisely,
Huberich showed in [30, Corollary 11] that from a normal ν`-dense ideal I over
ν` for ν regular, there is an ultrafilter U Ě I˚ over ν` which is generated by
I˚ Y tXα | α ă 2ℵ0u. Let us use it to deduce that there is a non-Tukey-top
ultrafilter from the weakening of p˚q in which ♢ is replaced by the weak diamond
principle of Devlin and Shelah [21], which is equivalent to 2ℵ0 ă 2ℵ1 .
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Theorem 5.4. Suppose that there is a normal ω1-dense ideal over ω1 and that
2ℵ0 ă 2ℵ1 . Then there is a non-(ω1,2

ω1)-Tukey-top ultrafilter over ω1.

Proof. By Huberich, let U be an ultrafilter generated by I Y tXα | α ă 2ℵ0u.

Given 2ℵ1-many sets xAβ | β ă 2ℵ1y, there is J P r2ℵ1sp2
ℵ0 q

`

such that for some
α˚ ă 2ℵ0 , Xα˚zAβ P I for each β P J . By Garti’s generalization of Galvin’s
theorem [26, Thm 1.1], there is J 1 P rJsω1 such that

Ť

jPJ 1pXα˚zAjq P I. We
conclude that

Ş

jPJ 1 Aj P U .

Note that by Přikrý and Jech [33, Thm. 7.2.1(a)], if ω1 carries a non-regular
ultrafilter and 2ℵ0 ă 2ℵ1 , then necessarily 2ℵ0 ě ℵω1

.

5.1. Non-regular and indecomposable ultrafilters

Since non-pµ, λq-regularity is a stronger form of non-pµ, λq-Tukey-top, it is
tempting to ask whether other non-regular ultrafilters over κ, specifically non-
pω, κq-regular, can ever be Tukey-top. A related notion to that of non-regularity
is the notion of indecomposability.

Definition 5.5. An ultrafilter U over κ is ν-decomposable if there is a function
f : κ Ñ ν such that for every X P rνsăν , f´1pXq R U . If there is no such
function, we say that U is ν-indecomposible

Clearly, U being ν-decomposable is equivalent to U being RK-above a uni-
form ultrafilter over ν.

Fact 5.6. If U is ν-indecomposable, then U is not pω, νq-regular.

Clearly, if U is ω-indecomposable, the U is σ-complete and therefore non-
Tukey-top. However, for ν ą ω the answer in general is negative:

Proposition 5.7. Assume CH. Let U be a uniform ω1-indecomposable ultra-
filter over any cardinal κ (even singular). Then after forcing with Addpω, 2κq,
U can be extended to a Tukey-top ω1-indecomposable ultrafilter over κ.

Proof. Note that in this case cfpκq ą ω1, since any singular cardinal and any
uniform ultrafilter over it must be cfpκq-decomposable. Theorem 4.8 applies
to show that in the extension, every uniform ultrafilter over κ is Tukey-top.
We claim that U generates a uniform ω1-indecomposable filter in V rGs. This
is enough since any extension of this filter to a uniform ultrafilter will remain
ω1-indecomposable and has to be Tukey-top. Indeed, let 9f be a name and p a
condition forcing 9f : κÑ ω1. We will prove that there is a set X P U such that p
forces 9fæX̌ is bounded. By the c.c.c. we can find in V , a function F : κÑ rω1s

ω

such that p forces that 9fpαq P F̌ pαq for every α ă κ. By CH in the ground
model, F is essentially a function to ω1, so by ω1-indecomposability, there a
set X P U such that

Ť

F rXs is bounded in ω1. Hence p forces that 9fæX̌ is
bounded.

Another form of non-regularity is weak normality. As we have seen in the
previous section, it is possible that a weakly normal ultrafilter is non-Tukey-
top. It is natural to wonder if being non-Tukey-top just a consequence of weak
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normality. This seems plausible in light of Galvin’s theorem 2.14. We will now
show that this is not the case if κ ą ω1 (see question 7.5).

Theorem 5.8. Suppose that U is a weakly normal ultrafilter over a regular
κ ą ω1, then after forcing with Addpω, 2κq, U generates a weakly normal filter
which can be extended to a weakly normal ultrafilter which is Tukey-top.

Proof. Let 9f : κ Ñ κ be regressive in V rGs. Again, let F : κ Ñ rκsω cover
f , and we may assume that F pαq Ď α (as f is regressive). Since U is weakly
normal, X0 “ tα | cfpαq ą ωu P U . Hence F pαq is bounded in α. By weak
normality of U , there are β ă κ and X Ď X0 in U such that for every α P X,
F pαq Ď β. Then β bounds 9fæX̌. Every extension of a weakly normal filter is a
weakly normal ultrafilter by [37, Prop. 1.2].

5.2. A remark following Usuba

As we have seen, every ultrafilter over ω1 is ω-decomposable and therefore
every ultrafilter over ω1 is RK-above an ultrafilter over ω. This raises the
question of whether or not there can be two cardinals λ ă κ and a uniform
ultrafilter Uκ over κ, which is not Tukey-above any uniform ultrafilter over λ.
Recently, Usuba [59] raised a similar question regarding the ultrafilter number
and used both new and existing results regarding indecomposable ultrafilters
to investigate the failure of monotonicity of the ultrafilter number function.
The common theme, which we are next going to exploit in order to translate
Usuba’s results to the terminology of our investigation of the Tukey order, is
the following:

Proposition 5.9. Suppose λ ă κ and there is a uniform ultrafilter Uκ over
κ such that for every uniform ultrafilter Uλ over λ, Uλ ęT Uκ. Then Uκ is
λ-indecomposable.

Proof. If it is λ-decomposable then it RK-projects (and therefore Tukey reduces)
to a uniform ultrafilter over λ.

Let us denote by TUpλ, κq the statement that every uniform ultrafilter over
κ is Tukey-above a uniform ultrafilter over λ. The above proposition is saying
that TUpλ, κq implies that there are no λ-indecomposable uniform ultrafilters
over κ.

There are ZFC restrictions on the existence of indecomposable ultrafilters.
These will be used in the following corollary:

Corollary 5.10. 1. For any cardinal κ, TUpω, κq if and only if κ does not
carry a uniform σ-complete ultrafilter.

2. For any cardinal κ, TUpcfpκq, κq.

3. For any regular cardinal κ, TUpκ, κ`q.

4. For any singular cardinal κ of cofinality ω such that κ` does not carry a
uniform σ-complete ultrafilter, TUpκ, κ`q holds.
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5. If TUpκ, κ`q fails, then there is a tail of regular cardinals µ ă κ such that
TUpµ, κ`q holds for each µ in this tail.

Proof. Only (1) does not directly follow from Usuba’s paper [59]. If U is not
σ-complete, then it is Tukey-above an ultrafilter over ω. If it is σ-complete,
then it cannot be above any ultrafilter over ω, as follows from an easy argument
using unbounded functions.

In [59], the author uses Raghavan and Shelah’s [49] to get the failure of mono-
tonicity at many pairs of cardinals. Note that if upκq ă upλq then ␣TUpλ, κq.
In particular, we have the following consistency results which follow directly
from [59]:

Corollary 5.11. 1. Starting from a measurable cardinal κ, forcing with Addpω, κ`ω1q

yields a model of ␣TUpκ, ω1q.

2. Starting from a supercompact cardinal, it is consistent that after forcing
with Addpω,ℵω1

q, ␣TUpω1, ωω`1q.

3. After PrikrypUqˆAddpω, κ`ω1q, κ is singular of cofinality ω and ␣TUpκ, ω1q.

The list above is by no means complete. There are many other results that
could be derived from known ones and questions that could be asked, but as our
focus is mostly on ultrafilters over ω1, we leave this line of research unattended.

6. The Ultrafilter UpT q

In [56], Todorcevic defined a filter UpT q associated to a coherent A-tree T ,
and showed that if the countable chain condition is productive, then UpT q is an
ultrafilter. He also established a number of additional properties of UpT q under
MAω1

and PFApω1q.

Theorem 6.1 ([56]). Assume PFApω1q. UpT q is not RK-isomorphic to an
ultrafilter over ω1 which extends the club filter.

Theorem 6.2 ([56]). Assume PFApω1q. If S and T are two coherent A-trees,
then UpSq and UpT q are RK-isomorphic.

Theorem 6.3 ([57]). Assume MAω1
. If T is a coherent A-tree and f : ω1 Ñ ω

is not constant on any set in UpT q, then f˚UpT q is a selective ultrafilter.

In this section we will add to this analysis, proving the following results.

Theorem 6.4. Assume PFApω1q. For any coherent A-tree T , rω2s
ăω ďT UpT q.

In particular, PFA implies UpT q is Tukey-top.

Theorem 6.5. Assume PFApω1q. If T is a coherent A-tree and f : ω1 Ñ ω1,
then there is a set U P UpT q such that either f is one-to-one on U or f is
bounded on U .
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In other words, PFApω1q implies that for any coherent A-tree T , UpT q is
ďRK-minimal with respect to being a uniform ultrafilter over ω1. It was previ-
ously known that the cardinal arithmetic assumption 2ℵ1 “ ℵ2 (which follows
from PFA) already yields many RK-minimal uniform ultrafilters over ω1 [18,
Thm. 9.13]; the point is that UpT q is a canonical example under suitable as-
sumptions.

It is known that a uniform ultrafilter over ω1 is weakly normal if and only
if it extends the club filter and is ďRK-minimal with respect to being uniform.
Curiously enough, while Laver has shown that MAω1

implies there are no weakly
normal ultrafilters over ω1 (see theorem 2.12), it consistent with MAω1

that UpT q
has either of these properties.

Theorem 6.6. It is consistent with MAω1 that there is a coherent A-tree T
such that UpT q extends the club filter.

Furthermore, since theorem 6.3 readily implies that any two projections of
UpT q to ω are RK-isomorphic, theorem 6.5 yields the following corollary.

Corollary 6.7. Assume PFApω1q. If T is a coherent A-tree, UpT q has a finest
partition.

The consistent existence of ultrafilters over ω1 with a finest partition was
previously demonstrated by Kanamori [39, p. 329] using ♢ and the existence of
an ω1-dense ideal over ω1.

We now recall the definitions associated to UpT q. A coherent A-tree is a
subset T of ωăω1 such that:

• T is uncountable and closed under initial segments;

• if s, t P T have the same height, then s “˚ t;

• there is no b : ω1 Ñ ω such that for all α ă ω1, bæα P T .

Recall that an A-tree T is special if there is a function ς : T Ñ ω such that
ς´1pnq is an antichain for each n. MAω1

(and hence PFApω1q) implies that all
A-trees are special [5]. Given a coherent A-tree T , define

UpT q :“ tU Ď ω1 | DA P rT s
ω1 ∆pAq Ď Uu.

Here
∆ps, tq :“ mintξ P dompsq X domptq : spξq ‰ tpξqu

and ∆pAq is the set of all ∆ps, tq such that s, t P A are incomparable. Most of
the literature around UpT q for coherent A-trees assumes that T has no Souslin
subtrees—a condition which is equivalent to them being Lipschitz (see [56,
1.10]); clearly special A-trees have no Souslin subtrees.
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6.1. The Tukey-type of UpT q
We now prove theorem 6.4. Recall the definition of U e⃗

f from section 3.2,
where f is a partial function from ω1 Ñ ω:

U e⃗
f :“

č

αPdompfq

U e⃗
α,fpαq

where
U e⃗
α,n :“ tβ P ω1 | pβ ď αq _ peβpαq ě nqu

and xeβ | β P ω1y is any sequence such that each eβ : β Ñ ω is an injection. In
what follows e⃗ will be fixed and we will suppress it as a superscript for ease of
reading.

Lemma 6.8. Assume PFApω1q. For any coherent A-tree T Ď ωăω1 and any
f : ω1 Ñ ω, there is a club C Ď ω1 such that UfæC is in UpT q.

Proof. Let T and f be given and recall that T must be special under our as-
sumption. Let ς : T Ñ ω satisfy that ς´1pnq is an antichain for each n P ω. By
proposition 3.9, there is a least ordinal α0 ă ω1 such that for all α ě α0 and all
n P ω, Uα,n P UpT q. Define Q to consist of all tuples q “ pAq, Cq, Oqq such that:

1. Aq Ď T is a finite antichain;

2. Oq Ď ω1 is a countable clopen set containing r0, α0q;

3. Cq Ď ω1zOq is finite;

4. if s ‰ t are in Aq and α P Cq with α ă β :“ ∆ps, tq, then fpαq ď eβpαq.

We order Q by coordinatewise reverse inclusion. A countable elementary sub-
model ofHpp2ℵ1q`q which has T , teβ | β P ω1u and f as elements will be referred
to as a suitable model for Q.

Claim 6.9. If M is a suitable model for Q, q P Q and M X ω1 P Cq, then q is
pM,Qq-generic.

Proof. Set δ :“M X ω1 and let D Ď Q be dense open and in M with q P D. It
suffices to find an r P M X D such that r is compatible with q. Let δ̄ ă δ be
sufficiently large that:

• Oq X δ Ď δ̄;

• thtpsq | s P Aqu X δ Ď δ̄;

• if s, t P Aq with ∆ps, tq ă δ, then spξq “ tpξq for all δ̄ ď ξ ă δ (in particular
∆ps, tq ă δ̄);

• Cq X δ Ď δ̄;

• if β P ∆pAqqzδ, then for all ξ P pδ̄, δq,

eβpξq ě maxtfpνq | ν P Cqzδu.
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If r P D, define nr :“ |Crzδ̄| and let δri be the ith-least element of Crzδ̄ for
i ă nr. Let t

r
i pi ă mrq enumerate

tsæδr0 | s P Ar and htpsq ě δr0u

in ďlex-increasing order. Set m :“ mq and n :“ nq and let X Ď D consist of all
r such that:

• mr “ m and both ςpsri q “ ςpsqi q and sri æδ̄ “ sqi æδ̄ for all i ă m;

• nr “ n and fpδri q “ fpδqi q for each i ă nq;

• ts P Ar | htpsq ă δr0u “ ts P Aq | htpsq ă δq0u;

• Cq X δq0 “ Cr X δr0.

We will eventually select an r from X XM which is compatible with q—i.e.
such that r̄ :“ pAq Y Ar, Cq Y Cr, Oq Y Orq is a condition. In fact, many of
the requirements necessary to be a member of Q are automatically met by r̄
just by virtue of r being in X XM . First observe that if r P X XM , then
maxpOrq ă δ “ δq0 and hence Cr Y Cq is disjoint from Or Y Oq. It is also
true that r P X X M implies that Ar̄ is an antichain. To see this, suppose
that t P AqzAr and t1 P ArzAq. Notice that it must be that htptq ě δq0 and
htpt1q ě δr0. Let i, i1 ă m be such that tæδq0 “ sqi and t1æδr0 “ sri1 . If i ‰ i1, then
since

sri æδ̄ “ sqi æδ̄ ‰ sqi1æδ̄ “ sri1æδ̄

it must be that sri and sqi1 are incompatible. If i “ i1, then since ςpsri q “ ςpsqi q
and sri ‰ sqi (since for instance sri P M and htpsqi q “ δ R M), sri and sqi1 are
incompatible. Since t extends sqi and t1 extends sri , t and t1 are incompatible.

Next suppose that β is in ∆pAr̄q “ ∆pAqYArq. If β P ∆pArq, then β ă δ “
δq0. In particular if α P Cr̄ with α ă β, α P Cr. Thus fpαq ď eβpαq by virtue
of r being a condition. If β P ∆pAqq and α P Cr̄zCq, let i ă n be such that
α “ δri . Observe that fpαq “ fpδri q “ fpδqi q. Since α P pδ̄, δq, it follows that
eβpαq ě fpαq.

The remaining possibility is that β P ∆pAq Y Arqzp∆pAqq Y∆pArqq— that
is β “ ∆psqi , s

r
i q for some i ă m. Observe that since for all j ă m

∆psqj , s
r
jq P pδ̄, δ

r
0q Ď pδ̄, δq

and since for all j ă m
sqjæpδ̄, δq “ sq0æpδ̄, δq,

srjæpδ̄, δ
r
0q “ sr0æpδ̄, δ

r
0q,

it follows that β “ ∆psqi , s
r
i q “ ∆psqj , s

r
jq for all i, j ă m. Thus we need to select

an r such that if β “ ∆psq0, s
r
0q, then for all α P Cr X δ̄, fpαq ď eβpαq. Notice

that since α0 Ď Or, α0 ď minCr, and therefore

U :“
č

tUα,fpαq | α P Cru
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is in UpT q. Set Y :“ tsr0 | r P Xu, noting that Y Ď T is an antichain and sq0 is
in Y . Furthermore Y is in M since it is definable from parameters in M . Let
Z be the set of all s P Y such that for all s1 ‰ s in Y , ∆ps, s1q R U . Since Z
is definable from parameters in M , Z is in M . If sq0 were in Z, then Z would
have uncountable ∆pZq and U would contain two disjoint sets in UpT q, which
contradicts that UpT q is a filter. Thus sq0 R Z and hence there is an r P Z such
that ∆psq0, s

r
0q P U . By our above observations, r̄ “ pAqYAr, CqYCr, OqYOrq

is a condition witnessing that q is compatible with r P D XM as desired.

Claim 6.10. Q is proper and the following sets are dense below some p0 P Q
for each ξ P ω1:

• tq P Q | ξ ă maxCqu,

• tq P Q | ξ ă maxthtpsq | s P Aquu.

Proof. To see that Q is proper, let M be suitable for Q, and p P QXM . Define
q “ pAp, Cp Y tδu, Opq, where δ “ M X ω1. By claim 6.9, q is a pM,Qq-generic
condition. Since p and M were arbitrary, Q is proper.

Next suppose that M is suitable for Q and let t P T zM . Define p0 :“
pttu, tδu,Hq, where δ “ M X ω1. By claim 6.9, p0 is pM,Qq-generic. It follows
that p0 forces that M r 9GXM s is elementary in Hpp2ℵ1q`qr 9Gs and that

Ť

tAq |

q P 9Gu and
Ť

tCq | q P 9Gu are both not contained in M r 9GXM s and hence that
both are uncountable. It follows that for any ξ P ω1, tq P Q | ξ ă maxCqu and
tq P Q | ξ ă maxthtpsq | s P Aquu are dense below p0.

Claim 6.11. For all ξ P ω1, D :“ tq P Q | ξ P Cq YOqu is dense.

Proof. Toward this end, let p P Q be given and observe that if ξ P Cq, then
p P D. If ξ R Cq, then there is a ξ̄ ă ξ such that pξ̄, ξs X Cq “ H. In this case
q :“ pAp, Cp, Op Y pξ̄, ξsq is an extension of p in D as desired.

Let G Ď Q be a filter containing p0 and meeting the dense sets listed in
claims 6.10 and 6.11 for each ξ ă ω1. Define A :“

Ť

tAq | q P Gu, C :“ tCq |

q P Gu, and O :“ tOq | q P Gu. Clearly A Ď T is an uncountable antichain and
C Ď ω1 is uncountable. Since O is open and is the complement of C, C is club.
Finally, set

U :“ t∆ps, tq | s ‰ t and s, t P Au.

By definition, U P UpT q. Moreover, if α P C and β “ ∆ps, tq P U , then
there must be some q P G such that α P Cq and s, t P Aq. Thus fpαq ď eβpαq.
Consequently we have shown that U Ď UfæC and hence that UfæC is in UpT q.

Recall that for an ultrafilter V p:qNSω1
,V is the following statement:

@f P ωω1DCf club such that UfæCf
P V

The previous lemma asserts that under PFA, every ultrafilter of the form UpT q
satisfies p:qNSω1

,UpT q. Theorem 6.4 then follows immediately from corollary 3.11.
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6.2. UpT q is RK-minimal

We now turn to the proof of theorem 6.5.

Proof. Let T be a special coherent A-tree and f : ω1 Ñ ω1 be given. Recall
that MAω1

implies UpT q is an ultrafilter and that T is special. Fix a function
ς : T Ñ ω such that ς´1pnq is an antichain for all n. If there is an α ă ω1 such
that tδ P ω1 | fpδq ď αu is in UpT q, then we are finished. Thus we may assume
that for all α ă ω1

tδ P ω1 | α ă fpδqu P UpT q.

Define Q to be the set of all pairs q “ pEq, Aqq such that:

1. Eq Ď ω1 is finite;

2. Aq Ď T is a finite antichain such that fæ∆pAqq is one-to-one;

3. if ν P Eq and s ‰ t P Aq are such that ν ď ∆ps, tq, then ν ď fp∆ps, tqq.

Claim 6.12. If M is a countable elementary submodel of Hpω2q with T, f, ς PM
and q P Q is such that M X ω1 P Eq, then q is pM,Qq-generic. In particular Q
is proper.

Proof. Let q be given and D Ď Q be a dense set in M . We need to find a
p P D XM such that p is compatible with q. By extending q if necessary, we
may assume that q P D. Set ν :“ M X ω1 and let ν1 ă ν be sufficiently large
that:

• if δ ă ν1, fpδq ă ν1;

• if s P Aq XM , htpsq ă ν1;

• if s, t P AqzM , then spξq “ tpξq for all ν1 ď ξ ă ν;

Since f is not bounded on any set in UpT q and since UpT q is an ultrafilter,
there is an uncountable antichain X Ď T such that if s, t P X are distinct, then
fp∆ps, tqq ą ν1. Fix a function p ÞÑ tp in M with domain D such that for all
p, tp P T has height minpEpzν

1q and tp is extended by an element of X. Let
ν2 ă ν be sufficiently large that ν1 ď ν2 and if ξ ă ν and tqpξq ‰ spξq for some
s P Aq, then ξ ă ν2.

Let D1 consist of those elements p of D such that:

• |Ep| “ |Eq| and there is a (necessarily unique) νp P Ep such that νpXEp “

νq X Eq and ν2 ă νp,

• |Ap| “ |Aq|, ts P Ap | htpsq ă νpu “ ts P Aq | htpsq ă νqu, and

tsæν2 | ps P Apq ^ phtpsq ě νpqu “ tsæν
2 | ps P Aqq ^ phtpsq ě νqqu;

• if s P Ap and htpsq ě νp, then whenever ν2 ď ξ ă νp, spξq “ tppξq;

• ςptpq “ ςptqq and tpæν
2 “ tqæν

2;
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Observe that νq “ ν, q P D1, and that D1 is definable from the parameters
Eq X νq, ts P Aq | htpsq ă νqu, tsæν

2 | ps P Aqq^ phtpsq ě νqqu, and tqæν
2 which

are each in M . Thus D1 PM .
We claim that any element p of D1 XM is compatible with q. It suffices

to show that r :“ pEp Y Eq, Ap Y Aqq is a condition in Q. First observe that
since ςptpq “ ςptqq and htptpq ă ν “ htptqq, tp is incompatible with tq; let
δ “ ∆ptp, tqq. If s P ApzAq and s1 P AqzAp, then by definition of D1 and the
fact that p P D1 X M , we know that ν2 ă νp ď htpsq ă ν ď htps1q. Since
tpæν

2 “ tqæν
2, it follows that ν2 ď δ ă νp ă ν and consequently spδq “

tppδq ‰ tqpδq “ s1pδq. In particular, s and s1 are incompatible. Furthermore, if
∆ps, s1q R ∆pApq, then again by definition of D1, it must be that ∆ps, s1q ě ν2.
Since s agrees with tp on rν2, δq and s1 agrees with tq on rν2, δq, it follows
that ∆ps, s1q “ ∆ptp, tqq “ δ. Summarizing, we have shown that Ap Y Aq is
an antichain and ∆pAp Y Aqq “ ∆pApq Y ∆pAqq Y tδu. Notice that by this
argument, if p P D1, ∆pApqzν

1 “ ∆pApqzνp.
In order to show that r is a condition, it remains to show that f is one-to-one

when restricted to ∆pArq. Observe that ∆pApq X ν1 “ ∆pAqq X ν1 and that

∆pApq X ν1 ă ν1 ď δ ă νp ď ∆pApqzν
1 ă ν ď ∆pAqqzν

1.

Also, ν1, νp, and ν are closed under f . Additionally, by virtue of p being
a condition in Q, if δ1 P ∆pApqzν

1, fpδ1q ě νp. Similarly if δ1 P ∆pAqqzν
1,

fpδ1q ě ν. It follows that f is one-to-one when restricted to ∆pApq Y ∆pAqq.
Finally, since δ P ∆pXq and νp is f -closed, ν1 ď fpδq ă νp. It follows that f is
one-to-one on ∆pArq “ ∆pApq Y∆pAqq Y tδu as well.

Claim 6.13. There is a condition q P Q which forces that 9A :“
Ť

tAp | p P 9Gu

is an uncountable antichain such that fæ∆p 9Aq is one-to-one.

Proof. Since it is forced that 9A is a directed union of antichains, it is forced to
be an antichain. Similarly, it is forced that f̌æ∆p 9Aq is one-to-one. Let M be a
countable elementary submodel of a sufficiently large Hθ such that T, f, ς P M
and let t P T zM . Since q “ ptMXω1u,H, ttuq, q is pM,Qq-generic by claim 6.12.
Because q forces M r 9Gs is elementary in HpθqrGs, it follows that q forces 9A and
9E are uncountable.

To finish the proof of theorem 6.5, let q force that 9A is uncountable and Dξ

consist of those extensions p of q such that Ap contains an element of height at
least ξ. By claim 6.13, each Dξ is dense below q. By PFApω1q, there is a filter
G which intersects Dξ for each ξ P ω1. If A “

Ť

pPG Ap, then ∆pAq is in UpT q
and f is one-to-one on ∆pAq.

6.3. UpT q can extend the club filter

Our next goal is to prove the following theorem from which theorem 6.6
follows. We will often need to refer to UpT q in generic extension for a given
T . In all cases, UpT q will be interpreted in the generic extension and we add a
“dot” to emphasize this. Thus 9UpŤ q is the name for the filter UpT q computed
in the generic extension for a coherent tree T from the ground model.
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Theorem 6.14. There is a c.c.c. poset which forces MAω1 and “there is a
coherent A-tree T such that 9UpŤ q extends the club filter.”

Lemma 6.15. Suppose that T is a coherent Souslin tree such that every element
has at least two immediate successors. There is a c.c.c. poset which forces “Ť
is special” and, for all uncountable X Ď ω1, forces “X̌ P 9UpŤ q`.”

Remark 6.16. In particular, since every club subset of ω1 in a c.c.c. forcing
extension contains a ground model club, the poset in lemma 6.15 forces 9UpŤ qX
NSω1 “ H.

Proof. Let T be given and let A be the finite-support countable power of the
poset of all finite antichains of T—this is the standard c.c.c. poset to specialize
T . Thus it suffices to show that if X Ď ω1 is uncountable, A forces X̌ P 9UpŤ q`.
Toward this end, let X Ď ω1 be given and let 9A be an A-name such that p P A
forces 9A is uncountable subset of Ť . For each ξ P ω1, let pξ be an extension of

p and tξ be an element of T of height at least ξ such that pξ , ťξ P 9A. For each
limit ordinal ξ, let rpξq ă ξ be such that:

• if i P domppξq and s P pξpiq has height less than ξ, it has height less than
rpξq;

• if i P domppξq and s P pξpiq has height at least ξ, then spηq “ tξpηq
whenever rpξq ď η ă ξ.

By the pressing-down lemma there is a stationary set Ξ Ď ω1 such that r is
constantly ζ on Ξ. By further refining Ξ if necessary, we may assume that
n :“ domppξq does not depend on ξ and for each i ă n, the set of elements
of pξpiq of height less than ζ does not depend on ξ. Observe that if tξæξ is
incompatible with tξ1æξ1, then pξpiq Y pξ1piq is an antichain for all i ă n and
hence pξ is compatible with pξ1 . Since T is Souslin, the downward closure of
ttξ | ξ P Ξu contains a cone in T . In particular there are ξ ‰ ξ1 in Ξ such that
tξ and tξ1 are incompatible and ∆ptξ, tξ1q is in X. It follows that pξ and pξ1 are

compatible and any common extension forces ∆ptξ, tξ1q P ∆p 9Aq X X̌.

Definition 6.17. Let T be a coherent special A-tree. For X Ď ω1, QT,X is
the poset consisting of finite antichains q Ď T such that ∆pqq Ď X, ordered by
reverse inclusion. If T is clear from context, we will write QX .

Lemma 6.18 ([56, rmk. 4.3]). Let T be a coherent special A-tree. For X Ď ω1,
QX is c.c.c. if and only if X P UpT q`.

The next lemma is essentially due to Todorcevic; see Lemmas 1.3 and 1.9 of
[56] as well as their proofs.

Lemma 6.19. Suppose T is a special coherent A-tree. If tqξ | ξ P ω1u is an
uncountable family of finite subsets of T and tξ P T has height at least ξ, then
there is an uncountable Ξ Ď ω1 such that for all ξ ‰ η P Ξ,

∆pqξ Y qηq “ ∆pqξq Y∆pqηq Y t∆ptξ, tηqu.
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Lemma 6.20. Let T be a coherent special A-tree. For X0, . . . , Xn´1 Ď ω1,
ś

iăn QXi is c.c.c. if and only if
Ş

iăn Xi P UpT q`.

Proof. Assume first that
ś

iăn QXi
is c.c.c.. It follows that there is a q P

ś

iăn QXi which forces that 9A :“ tt P T | pttu, . . . , ttuq P 9Gu is uncountable.

Since every condition forces ∆p 9Aq Ď
Ş

iăn X̌i, it follows that q forces
Ş

iăn X̌i P

9UpŤ q. Because membership in UpT q is upwards absolute and since UpT q is a
filter in all generic extensions in which T remains uncountable, it follows that
ω1z

Ş

iăn Xi R UpT q or, equivalently, that
Ş

iăn Xi P UpT q`.
Now consider the converse and assume

Ş

iăn Xi P UpT q`. For each ξ P ω1, fix
tξ P T of height ξ. Consider a collection tpq0ξ , . . . , q

n´1
ξ q : ξ ă ω1u Ď

ś

iăn QXi .
By n applications of lemma 6.19, there is an uncountable Ξ Ď ω1 such that for
all ξ ‰ η in Ξ and i ă n,

∆pqiξ Y qiηq Ď ∆pqiξq Y∆pqiηq Y t∆ptξ, tηqu.

Since
Ş

iăn Xi P UpT q`, there are ξ ‰ η in Ξ such that ∆ptξ, tηq P
Ş

iăn Xi.
Because ∆pqiξq Y∆pqiηq Ď Xi by virtue of qiξ, q

i
η P QXi

, it follows that

∆pqiξ Y qiηq Ď ∆pqiξq Y∆pqiηq Y t∆ptξ, tηqu Ď Xi.

Thus pq0ξ Y q0η, . . . , q
n´1
ξ Y qn´1

η q is a common extension of pq0ξ , . . . , q
n´1
ξ q and

pq0η, . . . , q
n´1
η q. Therefore

ś

iăn QXi
is c.c.c..

Proposition 6.21. Suppose that T is a coherent Souslin tree such that every
element has at least two immediate successors and F is a filter on ω1 containing
all cobounded sets. There is a c.c.c. poset Q which forces F̌ Ď 9UpŤ q.

Proof. Let A be the countable finite-support power of the poset of finite an-
tichains of T . Work in a forcing extension by A, noting that in this extension
T is special and by lemma 6.15, F is a filter contained in UpT q`. Let Q be
the finite support product of the posets Qăω

X for X P F , where Qăω
X denotes

the finite-support countable power of QX . Since a finite-support product is
c.c.c. if and only all of its finite subproducts are c.c.c., it suffices to show that
if xXi | i ă ny is a finite sequence of elements of F (possibly with repetition),
then

ś

iăn QXi is c.c.c.. As
Ş

iăn Xi P F Ď UpT q`, lemma 6.20 implies that
ś

iăn QXi
is c.c.c.. Finally, since Qăω

X forces that }QX is a union of countably

many filters, it forces that X̌ P 9UpŤ q. Thus Q forces F̌ Ď 9UpŤ q.

Proof of theorem 6.14. By [55, 6.9], in any generic extension by Addpω, 1q there
is a coherent Souslin tree T , which we may take to have the property that every
element has at least two immediate successors. By proposition 6.21 applied to
this Souslin tree and the club filter, there is an Addpω, 1q-name 9P for a c.c.c.

poset such that Addpω, 1q ˚ 9P forces that Up 9T q extends the club filter. Now

let 9Q be any Addpω, 1q ˚ 9P-name for a c.c.c. poset which forces MAω1 . Since
any club in a c.c.c. forcing extension contains a ground model club, in the final
extension UpT q will still extend the club filter and additionally MAω1

will hold
(in particular UpT q will be an ultrafilter).

29



Corollary 6.22. It is consistent that MAω1 holds and there is a coherent A-tree
T such that UpT q extends the club filter and is ω1-Tukey-top.

Proof. Start with the Abraham-Shelah model and go into the c.c.c. forcing
extension in which there is a coherent A-tree T such that UpT q extends the club
filter. The desired conclusion follows from the properties of the club filter in the
Abraham-Shelah model.

7. Questions and Further Directions

In this section, we collect some problems and proposed directions. First,
the results of this paper emphasize the connection between the Tukey types of
ultrafilters over uncountable cardinals and the Tukey types of function spaces
of the form µλ. To the best of our knowledge, the study of such Tukey types is
lacking. Particularly, we would like to know the answer to the following question
(see StackExchange discussion [29]):

Question 7.1. Is it provable in ZFC that ωω1 is Tukey-top?

Note that it is an old problem of Přikrý whether ZFC proves cfpωω1 ,ďq “ 2ℵ1 .
In section 5, we showed that consistently every uniform ultrafilter over ω1 is

Tukey-top, and provided several models for it. There are other models of interest
where we do not know whether all uniform ultrafilters over ω1 are Tukey-top.
It is plausible that the rigidity of the structure of ultrafilters over ω in some of
these models would enable a proof of the independence of Isbell’s question for
uncountable cardinals over ZFC, with no need for large cardinals such as our
present construction 5 of non-ω1-Tukey-top ultrafilters over ω1 requires.

Question 7.2. Consider any of the models obtained by forcing with iterated
Sacks, side-by-side Sacks, iterated Silver, or product of Silver reals. Is every
uniform ultrafilter over ω1 Tukey-top in any/all of those models?

The Silver model is particularly interesting as it is conjectured (see [17, an-
nouncement 9 ff.]) that every ultrafilter over ω is Tukey-top there. The following
question concerns other possible constructions of non-Tukey-top ultrafilters:

Question 7.3. Suppose that there is an pℵ2,ℵ2,ℵ0q-saturated ideal over ω1. Is
there a non-Tukey-top uniform ultrafilter over ω1?

Another method for constructing weakly normal ultrafilters is due to Fore-
man, Magidor, and Shelah through layered ideals [25]

Question 7.4. Let U be the FMS weakly normal ultrafilter from [25]. Is it
non-Tukey-top?

Question 7.5. Is it consistent, relative to large cardinals, that there is a weakly
normal Tukey-top ultrafilter over ω1?
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As we have seen in subsection 5.1, for κ ą ω1 it is possible for weakly normal
ultrafilters to be Tukey-top. One approach to a positive answer is to show that
it is consistent relative to large cardinals that p:qI,U holds for a weakly normal
ultrafilter U .

The constructions we used for non-Tukey-top ultrafilters over ω1 require
large cardinals. We do not know whether large cardinals are necessary:

Question 7.6. Does the existence of a non-Tukey-top uniform ultrafilter over
ω1 imply the consistency of large cardinals? What about non-ω1-Tukey-top
uniform ultrafilters?

One approach to showing that it does, in alignment with our intuition and
current examples indicating that non-Tukey-top ultrafilters are special and rare,
is to connect such cardinals with non-regular ultrafilters:

Question 7.7. Is every non-Tukey-top ultrafilter uniform ultrafilter over ω1

non-regular? What about non-ω1-Tukey-top ultrafilters?

The best-known lower bound for the consistency strength of the existence of
non-regular ultrafilters over ω1, due to Deiser and Donder [20], is a stationary
limit of measurable cardinals. The same question for κ ą ω1 is of interest, where
the best lower bound, due to Cox [19], is a measurable cardinal κ with Mitchell
order at least κ`.

Remark 7.8. Answering this question in the positive will in particular show that
a counterexample to Kunen’s problem requires large cardinals.

Finally, it is natural to ask what influence strong forcing axioms have on
Isbell’s problem for ω1:

Question 7.9. Does PFA imply that every uniform ultrafilter over ω1 is Tukey-
top? What about stronger forcing axioms such as MM?
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[50] Dilip Raghavan and Stevo Todorčević, Cofinal types of ultrafilters, Annals
of Pure and Applied Logic 163 (2012), no. 3, 185–199.

[51] Jürgen Schmidt, Konfinalität, Zeitschrift für Mathematische Logik und
Grundlagen der Matematik 1 (1955), 271–303.

[52] Alan D. Taylor, Regularity properties of ideals and ultrafilters, Annals of
Mathematical Logic 16 (1979), no. 1, 33–55.

34



[53] Stevo Todorcevic, Notes on forcing axioms, Lecture Notes Series. Institute
for Mathematical Sciences. National University of Singapore, vol. 26, World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014, Edited and with
a foreword by Chitat Chong, Qi Feng, Yue Yang, Theodore A. Slaman and
W. Hugh Woodin. MR 3184691
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